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Abstract

This study proposes tests for the null hypothesis of a unit root against shifting trend
stationary alternatives. In particular, models with structural change in the form of level
or trend shifts are studied. Roots local-to-unity are addressed in models with structural
change and asymptotic power functions of the tests are derived using local-to-unity asymp-
totic framework. These tests have good power properties against shifting trend stationary
alternatives. Tests in the presence of multiple shifts are also examined. The asymptotic dis-
tributions of the tests are derived under exogenous and endogenous shift point assumptions.
The asymptotic and finite sample percentiles of the tests are tabulated using Monte Carlo
integration. Monte Carlo simulations reveal that tests have good power and size properties
against various alternatives.

JEL Classificatio: C22
Keywords: Unit roots, structural change, quasi-di↵erencing

Most economic time series show a strong nonreversible tendency to grow. Thus, the origi-

nal treatment of testing for a unit root against trend stationary (TS) alternatives by Nelson

and Plosser (1982) can be well justified. It seems reasonable to decompose a time series into

stochastic and deterministic components and examine the stochastic nature of the series from

the detrended series. An assumption made here is, of course, that the detrending leaves only

the stochastic component. The behavior of the detrended series will heavily depend on the spec-

ification of the deterministic component. If deterministic component is misspecified inference

from unit root tests will be misleading. A misspecified trend function heavily distorts the test

results. It is well known that many economic time series display heterogeneous behavior in

their deterministic component. It is observed that this heterogeneous behavior display itself in

the form of level shifts, trend shifts, or both. A level shift corresponds to a change in the mean

of series and a trend shift corresponds to a change in the growth rate of series. This type of

⇤The paper is largely based on my PhD dissertation, Balcilar (1996).



behavior is described as “variable trend” by Stock and Watson (1988) and “breaking trends”

by Perron (1989). What is meant by this terminology is that the time series goes a structural

change in the form of level or trend shifts, yielding a more general class of trend stationary

processes. We will call this class of trend stationary time series shifting trend stationary (STS),

hereafter.

Unit root tests against linear trend stationary alternatives have been studied extensively

in the literature, following Dickey (1976), Fuller (1976), Dickey and Fuller(1979, 1981). The

Dickey-Fuller tests were extended to more general cases by Said and Dickey (1984), Phillips

(1987a), Phillips (1988), and Phillips and Perron (1988). A profusion of theoretical as well as

empirical research followed these papers. On the theoretical side, many tests of general I(1) null

against stationary, I(0), alternatives are proposed and properties of these tests are examined.

On the empirical side, researchers tested many economic time series for the existence of unit

roots. In some cases, however, it appears that the constant growth rate implied by linear trend

may not be appropriate and hard to justify. In these cases, higher order polynomial time trends

seem to better approximate the behavior of the time series. The models that allow for higher

order polynomial time trends in deterministic component have been examined by Park and

Choi (1988) and Ouliaris, Park and Phillips (1989). Diebold and Nerlove (1990) argue that

higher order polynomial time trends can indeed approximate STS models, and therefore, unit

root models. Indeed, once a quadratic trend is included in the regression, distribution of the

test statistics will be di↵erent and inference based on critical values in Fuller (1976) will be

unqualified. Thus, there is an uncertainty about what higher order polynomial time trends

represent.

Perron (1989) is the first study raising the possibility of STS models. He suggests that the

null hypothesis of unit root should be tested against an STS alternative. He finds that once a

one time change in the trend function is allowed, the null of a unit root is rejected for 11 out of

14 time series examined by Nelson and Plosser (1982).

Perron (1989) treats the timing of shift as exogenous. Although, this is subject to various

criticism it often looks appealing. Recently Perron (1990a), Banerjee, Lumsdaine and Stock

(1992), Perron and Vogelsang (1992), and Zivot and Andrews (1992) extended unit root tests

against STS alternatives with endogenous shift point. A detailed exposition of Perron’s ap-

proach as well as a di↵erent interpretation of his models based on intervention analysis is made

by Noriega-Muro (1993). Noriega-Muro (1993) also has analytic results as well as finite sample

analysis of the models under this interpretation. Recently, Park and Sung (1994) extended Per-

ron’s models allowing higher order time polynomials in the deterministic component. Although,
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Park and Sung (1994) maintain the exogenous shift point assumption they allow for finite but

many trend shifts.

Unit root tests in general are shown to have low power. The power issue becomes more

serious under the STS alternatives. Recent research on unit root tests have concentrated on

developing test statistics with good power properties. Sargan and Bahargava (1983) and Ba-

hargava (1986) develop most powerful invariant (MPI) test of a unit root hypothesis. Nabeya

and Tanaka (1990) derive both locally best invariant (LBI) and locally best invariant unbiased

(LBIU) tests, although, LBI test is no use in some cases. Dufour and King (1991) also develop

LBI and point optimal invariant (POI) tests, later one being constructed as MPI. Saikkonen and

Luukkonen (1993) constructs POI test of a unit root in a first-order Gaussian moving average

model and generalize the result to more general ARIMA models. Finally, Elliot, Rothenberg

and Stock (1992) develop POI tests under local alternatives with generalized least squares (GLS)

detrended data.

Although, no uniformly most powerful (UMP) unit root test exists, Elliot et al. (1992) (ERS

hereafter) correct POI test of Dufour and King (1991) for nuisance parameter dependency un-

der a Gaussian AR(p + 1) and construct new statistics. One of the test statistics, which is

constructed with locally GLS demeaned series under the alternative, is approximately asymp-

totically UMP. ERS also show that the Dickey-Fuller test statistics constructed from locally

GLS demeaned series under the alternative is also approximately asymptotically UMP. Two

other tests, which are constructed from locally demeaned and linearly detrended series under

the alternative, are asymptotically uniformly most powerful invariant (UMPI).

All these tests have good power properties compared to the Dickey-Fuller tests. Unfortu-

nately, they are constructed under the TS alternatives. It is well known that, unit root tests

have worse power properties when the data is generated by an STS process. Balcilar (1996)

investigates power of these tests under structural changes and shows that good power proper-

ties of these tests are not preserved when there is a shift in the trend function. In a simulation

exercise, Balcilar (1996) shows that as the size of either a level shift or a trend shift increases

these tests essentially have zero power after the size of the shift reaches a threshold value. In

this study, we construct new test statistics in the lines of Elliot et al. (1992) under local-to-unity

alternatives that incorporate level or trend shifts in the data. An important feature of these

tests is that they are constructed under roots local-to-unity. The local-to-unity asymptotic

framework allows us to establish asymptotic power functions of the tests. We maximize the

power of the tests using the asymptotic power functions. As in the previous studies, we examine

both additive and innovational outlier models. Further, multiple level and trend shifts are also
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allowed. Asymptotic distribution of the tests statistics when the alternative is an STS process

is analytically derived under exogenous and endogenous shift point assumptions. Finite sample

properties of the estimators used to construct the tests are extensively investigated using Monte

Carlo simulations. Finite sample and asymptotic percentiles of the tests are tabulated using

Monte Carlo integration. Monte Carlo investigations show that tests have good power and size

properties.

The plan of this paper is as follows: Section 1 discusses the models we consider and states

some assumptions and conditions that are used in deriving the asymptotic distributions of the

tests. Section 2 derives the asymptotic distribution of the test statistics under the assumption

of a one time structural change at a known time. In Section 3, we generalize the tests to a more

class of models. In particular, the innovational outlier model is considered, multiple structural

changes are allowed, and the assumption of exogenous time of structural change is relaxed. The

finite sample properties of the estimators are examined in Section 4. The asymptotic and finite

sample critical values of the tests are derived in Section 5. The finite sample power and size

properties of the tests are investigated in Section 6. Section 7 concludes the paper.

1 The Hypothesis, Models and Assumptions

Our approach is based on the local-to-unity asymptotic framework of Bobkoski (1983), Ca-

vanagh (1985), Chan and Wei (1987), and Phillips (1987b). The local-to-unity asymptotic

framework allows us to derive the asymptotic power functions of the tests and makes power

comparisons among the competing tests possible. we propose tests of a unit root when the

alternative is an STS process. Test statistics we propose are useful modifications of the Dickey-

Fuller unit root tests under STS alternatives. The modifications to the Dickey-Fuller unit root

tests are achieved using the transformation and method developed by Elliot et al. (1992). We

construct the test statistics along the lines of Elliot et al. (1992) under local-to-unity alterna-

tives that incorporate the level and trend shifts in the trend function. An important feature of

these tests is that they are constructed under roots local-to-unity. The local-to-unity asymp-

totic framework allows us to establish asymptotic power functions of the tests. We maximize

the power of the tests using these asymptotic power functions. As in the previous studies we

examine both the additive and innovational outliers models. Further, multiple level and trend

shifts are also allowed. The asymptotic distributions of the test statistics when the alternative

is an STS process are analytically derived under both exogenous and endogenous shift point

assumptions. In the demeaned case, tests are approximately asymptotically UMP, whereas in

the demeaned and linearly detrended case tests are approximately asymptotically UMPI.
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We consider time series {yt} which are the sum of a purely deterministic component dt and

a purely stochastic component ut:

yt = dt + ut, (1.1)

where

(1� ⇢L)ut = vt. (1.2)

The literature on unit roots mostly assumes that vt is an AR(p). We impose a weaker

condition on vt and assume that vt satisfy the conditions in Assumption 1.1.

Assumption 1.1. Let {vt}1t=1 be a stochastic process and define ST =
PT

j=1 vj such that

(a) E(vt) = 0 8t,

(b) supt E |ut|2� < 1 for some � > 2,

(c) �2 = limT!1 E
⇥
T�1S2

T

⇤
exists, and �2 > 0,

(d) {vt} is strong mixing with mixing coe�cients {↵m} satisfying

1X

m=1

↵1�2/�
m < 1. (1.3)

These conditions allow a wide variety of weakly dependent and heterogeneously distributed

DGP’s for {vt}. These include the finite order ARIMA models with quite general conditions on

the innovations. (b) basically controls allowable heterogeneity. It is also a su�cient condition

for the existence of the variance and the non-integer higher order moments of {vt}. However,

it is also su�ciently weak to allow some heterogeneity since E |vt|�+⇠ is not a constant. (c)

is needed to ensure nondegenerate limiting distributions. (d) controls the allowable temporal

dependence in relation to the probability of outlier occurances controlled by (b) (see Phillips

(1987a) for further details).

Usually the first observation u1 is assumed to be zero to simplify derivations. However,

integrated processes heavily depend on initial conditions. Therefore, we will assume that u1 is

unknown but satisfy the following condition:

Condition 1.1. E
⇥
u21
⇤
< 1.

That is, u1 has a finite second moment. This includes the special case that u1 is fixed.

One of the conditions in the following assumption will be very useful to simplify some of

the derivations.

Assumption 1.2. Each of the following alternatives are equivalent in terms of the result they
lead to:

(a) S0 = 0,
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(b) y0 = c with probability one, where c is a constant,

(c) y0 has a certain distribution,

(d) y0 = yT where T is finite sample size.

Further, let

⇢ = exp
⇣ c

T

⌘
⇡ 1 +

c

T
. (1.4)

The crucial role of the expression in (1.4) is that it allows us to derive the asymptotic power

functions of the tests. Then, one can maximize the power of the tests by a suitable choice of c

under the alternative, say c̄. Note also that the models are constructed to be near-stationary in

finite samples, thus, roots local-to-unity are explicitly addressed. However, models are asymp-

totically nonstationary since limT!1(1 + c/T ) = 1.

Following Phillips (1987b), let Bc(r) defined by

Bc(r) =

Z r

0
e(r�s)cdB(s). (1.5)

The functional Bc(r) is known as an Ornstein-Uhlenbeck process and will play an important

role in our derivations. For fixed r > 0, Bc(r) is distributed as

Bc(r) ⇠ N

✓
0,

1

2

�
e2rc � 1

�
/c

◆
.

Here, Bc(r) is generated by the stochastic di↵erential equation:

dBc(r) = cBc(r)dr + dB(r), Bc(0) = 0.

Sometimes it is useful to use the following definition of Bc(r):

Bc(r) = B(r) + c

Z r

0
e(r�s)cB(r)dr, (1.6)

which is simple to derive from (1.5). From Phillips (1987b), we obtain the following result:

Bc(1)
2 = 1 + 2c

Z 1

0
Bc(r)

2dr + 2

Z 1

0
Bc(r)dB(r), (1.7)

which is obtained by stochastically integrating
�R r

0 e�scdB(r)
�2
.

Since the model involves detrending, results will depend on the trend estimation error which

we denote by

⇠t = d̃t � dt. (1.8)

Now let, UT (r) = T�1/2u[Tr], and ⌥T (r) = T�1/2⇠[Tr]. Following Stock (1994), we impose the

following condition:
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Condition 1.2 (Detrending conditions). Let {yt} and {ut} be defined as in (1.1)-(1.2), if ut is
I(1):

(a) (UT ,⌥T ) =) �(Bc,⇤c) where ⇤c 2 C[0, 1],

(b) k�⇠tk = Op(1).

The hypothesis of interest is

H0 : ⇢ = 1 against the alternative H1 : ⇢ = ⇢̄.

where ⇢̄ = 1 + c̄/T .

We also allow a one time shift in the trend function dt at a known time TB. For the level

shift model we define

dt = µ+ �t+ ✓Dt, Dt = {0|t  TB, 1|t > TB}. (1.9)

A trend shift is modeled as

dt = µ+ �t+ ✓Dt, Dt = {0|t  TB, t� TB|t > TB}. (1.10)

To simplify the derivations let

dt = �0zt, (1.11)

where � = (µ, �, ✓)0 and zt = (1, t,Dt)0.

Now, in order to obtain the locally GLS detrended series we apply the following transfor-

mations:

(ỹ1, ỹ2, . . . , ỹT ) = (y1, (1� ⇢̄L)y2, . . . , (1� ⇢̄L)yT ) (1.12a)

(z̃1, z̃2, . . . , z̃T ) = (z1, (1� ⇢̄L)z2, . . . , (1� ⇢̄L)zT ) (1.12b)

This is a valid transformation as discussed by Dufour and King (1991). Briefly, when testing

for the null of a general I(1) (⇢ = 1) against the point alternative ⇢ = ⇢̄, a general requirement

is that the tests should be invariant to the transformations of the form yt 7! ayt + b0zt, where

a is a positive scalar and b is a finite vector with dimension conformable to zt. All unit root

tests meet this invariance requirement.

Note that with the trend function specified as in (1.9) or (1.10), we cannot construct asymp-

totically point optimal tests. The reason here is not the introduction of the level or trend shift

dummy Dt (at least for the level shift model), but the presence of the linear trend. For the trend

shift model a linear trend already exits and Dt does not change the order of the existing trend,

only the slope of the trend variable is a↵ected by Dt. In the absence of a linear trend (this

includes dropping t in (1.9) and both t and Dt in (1.10)) one can still construct point optimal
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unit root tests since in this case unit root test statistics constructed from both yt and ut would

have the same asymptotic power function, an observation initially made by Elliot et al. (1992).

However, when a linear or higher order trend is present test statistics that are constructed from

yt and ut will not have the same limiting distribution. Therefore, tests constructed assuming

either (1.9) or (1.10) will be necessarily restricted to the class of point optimal invariant tests

which are invariant to nuisance parameters.

The results from the following two lemmas will be extensively used to derive the asymptotic

distributions of the test statistics.

Lemma 1.1. Let {ut} be a stochastic process defined in (1.2) satisfying the condition (c) of
Assumption 1.2, and assume that {vt} satisfy the conditions in Assumption 1.1. Let ⇢ = 1+c/T ,
then,

(a) T�1/2
TX

t=2

vt =) �B(1),

(b) T�1
TX

t=2

ut�1vt =) �2
Z 1

0
Bc(r)dB(r) + (1/2)(�2 � �2

v),

(c) T�3/2
TX

t=2

tvt =) �
⇣
B(1)�

Z 1

0
B(r)dr

⌘
,

(d) T�3/2
TX

t=2

ut�1 =) �

Z 1

0
Bc(r)dr,

(e) T�2
TX

t=2

u2t�1 =) �2
Z 1

0
Bc(r)

2dr,

(f) T�5/2
TX

t=2

tut�1 =) �

Z 1

0
rBc(r)dr,

(g) T�1/2
TX

t=2

�ut =) �Bc(1),

(h) T�3/2
TX

t=2

t�ut =) �
⇣
Bc(1)�

Z 1

0
Bc(r)dr

⌘
.

Proof. See Phillips (1987b) for (a)-(f) and Appendix for (g) and (h).

Lemma 1.2. Let {ut} be a stochastic process defined in (1.2) satisfying the condition (c) of
Assumption 1.2. Assume that {vt} satisfy the conditions in Assumption 1.1. Let � = TB/T
and ⇢ = 1 + c/T , then,

(a) T�1/2uTB = T�1/2uTB+1 = T�1/2uTB+2 =) �Bc(�),

(b) T�1/2
TX

t=TB+2

�ut =) �(Bc(1)�Bc(�)),
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(c) T�3/2
TX

t=TB+2

ut�1 =) �

Z �

0
Bc(r)dr,

(d) T�3/2
TX

t=TB+2

t�ut =) �

 ✓
Bc(1)� �Bc(�)

◆
�
✓Z 1

0
Bc(r)dr �

Z �

0
Bc(r)dr

◆!
,

(e) T�5/2
TX

t=TB+2

tut =) �

 Z 1

0
rBc(r)dr �

Z �

0
rBc(r)dr

!
.

Proof. See Appendix.

2 E�cient and Near E�cient Tests

The test statistics we study are based on the locally GLS detrended data. We define the

estimated trend using the transformed data by

d̃t = �̃
0
z̃t, (2.13)

where

�̃ =

✓ TX

t=1

z̃tz̃
0
t

◆�1✓ TX

t=1

z̃tỹt

◆
. (2.14)

Now we derive the GLS biases:

(�̃ � �) =

✓ TX

t=1

z̃tz̃
0
t

◆�1✓ TX

t=1

z̃tũt

◆
, (2.15)

where (�̃ � �) = ((µ̃� µ), (�̃ � �), (✓̃ � ✓))0.

First, we consider trend estimation with a level shift.

Theorem 2.1. Let {ut} be a stochastic process defined in (1.2) satisfying the Condition 1.1.
Assume that {vt} satisfy the conditions in Assumption 1.1. Let dt be as defined in (1.9),
� = TB/T , and ⇢ = 1 + c/T , then,

T 1/2(µ̃� µ� u1) =) �

 
� 3

2

c̄2(c̄2 � 2c̄+ 2)

c̄2 � 3c̄+ 3

Z 1

0
rBc(r)dr

+ c̄2
Z 1

0
Bc(r)dr +

1

2

(c̄3 � 3c̄2 + 6c̄� 6)

c̄2 � 3c̄+ 3
Bc(1)

!
,

(2.16)

T 1/2(�̃ � �) =) �

 
3

c̄2

c̄2 � 3c̄+ 3

Z 1

0
rBc(r)dr + 3

1� c̄

c̄2 � 3c̄+ 3
Bc(1)

!
, (2.17)

(✓̃ � ✓) =) vTB+1. (2.18)

Proof. See Appendix.
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Note that, ✓̃ is inconsistent even in large samples. This means that an uncertainty remains

about the size of the level shift. This is an expected result since (1� ⇢̄L)Dt is an “ill-behaving”

variable. Inconsistency of ✓̃, however, will not a↵ect the asymptotic distributions of the test

statistics since the test statistics are invariant to ✓̃.

Now, we will consider detrending under a trend shift.

Theorem 2.2. Let {ut} be a stochastic process defined in (1.2) satisfying the Condition 1.1.
Assume that {vt} satisfy the conditions in Assumption 1.1. Let dt be as defined in (1.10),
� = TB/T , and ⇢ = 1 + c/T , then,

T 1/2(µ̃� µ� u1) =) �

 
c̄4 �2 (�� 1 ) ( c̄�� c̄+ 3 )

m1(c̄,�)
Bc(1) + 3

m2(c̄,�)

�m1(c̄,�)
Bc(�)

+
c̄4 �2

�
c̄2 �2 + c̄2 �� 2 c̄2 � 6 + 6 c̄

�

m1(c̄,�)

Z 1

0
Bc(r)dr

� 3
c̄2m2(c̄,�)

m1(c̄,�)

Z �

0
Bc(r)dr � 3

c̄5 �2 ( c̄�+ 2� c̄ )

m1(c̄,�)

Z 1

0
rBc(r)dr

+ 3
c̄2m2(c̄,�)

�m1(c̄,�)

Z �

0
rBc(r)dr

!
,

(2.19)

T 1/2(�̃ � �) =) �

 
6
c̄2(�� 1)(c̄�� c̄+ 3)

m1(c̄,�)
Bc(1)� 6

m3(c̄,�)

�m1(c̄,�)
Bc(�)

� 6
c̄2m3(c̄,�)

�m1(c̄,�)

Z 1

0
Bc(r)dr + 6

c̄2m3(c̄,�)

�m1(c̄,�)

Z �

0
Bc(r)dr

+ 18
c̄3(c̄�+ 2� c)

m1(c̄,�)

Z 1

0
rBc(r)dr � 6

c̄2m3(c̄,�)

�m1(c̄,�)

Z �

0
rBc(r)dr

!
,

(2.20)

T 1/2(✓̃ � ✓) =) �

 
� 6

3c̄2 � c̄3 + 6c̄3�2 � 6c̄� c̄2�2

m1(c̄,�)(�� 1)
Bc(1)

+ 12
3� 3c̄+ c̄2

�m1(c̄,�)(�� 1)
Bc(�) + 12

c̄2(3� 3c̄+ c̄2)

m1(c̄,�)(�� 1)

Z 1

0
Bc(r)dr

� 12
c̄2(3� 3c̄+ c̄2)

�m1(c̄,�)(�� 1)

Z �

0
Bc(r)dr + 18

c̄3(c̄�+ 2� c)

m1(c̄,�)

⇥
Z �

0
rBc(r)dr + 6

c̄2(�3c̄2 + 6c̄� 6 + c̄2�2)

m1(c̄,�)(�� 1)

Z �

0
rBc(r)dr

+ 12
c̄2(3� 3c̄+ c̄2)

�m1(c̄,�)(�� 1)

Z �

0
rBc(r)dr

!
.

(2.21)

where

m1(c̄,�) = c̄4 �4 + c̄4 �3 � 5 c̄4 �2 � 12 c̄2 �2 + 12 c̄3 �2 + 3� c̄4 + 12 c̄2 �

� 12 c̄3 �+ 12 c̄2 � 36 c̄+ 36,

m2(c̄,�) = �� c̄4 � 4 c̄2 �+ 12 c̄+ 2 c̄2 �2 � 2 c̄3 �2 + c̄4 �2 + 4 c̄3 �� 4 c̄2 � 12.

m3(c̄,�) = c̄2�2 + c̄2�� 2c̄2 � 6 + 6c̄.
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Proof. See Appendix.

Based on the estimated trend parameters we define the following detrended series:

y
⌧µ
t = yt � µ̃� �̃t� ✓̃Dt, Dt = {0|t  TB, 1|t > TB}, (2.22)

y⌧�t = yt � µ̃� �̃t� ✓̃Dt, Dt = {0|t  TB, t� TB|t > TB}. (2.23)

From Theorem 2.1 and Theorem 2.2 following lemma is easily proven.

Lemma 2.1. Under local GLS detrending:

T�1/2y
⌧µ
[Tr] =) �B

⌧µ
c (r), (2.24)

T�1/2y⌧�[Tr] =) �B⌧�
c (r), (2.25)

where

B
⌧µ
c (r) = Bc(r)� r

✓
3

c̄2

c̄2 � 3c̄+ 3

Z 1

0
rBc(r)dr + 3

1� c̄

c̄2 � 3c̄+ 3
Bc(1)

◆
, (2.26)

B⌧�
c (r) = Bc(r)� r

✓
6
c̄2(�� 1)(c̄�� c̄+ 3)

m1(c̄,�)
Bc(1)� 6

m3(c̄,�)

�m1(c̄,�)
Bc(�)

� 6
c̄2m3(c̄,�)

�m1(c̄,�)

Z 1

0
Bc(r)dr

◆
� (r � �)1(r > �)

⇥
✓
� 6

3c̄2 � c̄3 + 6c̄3�2 � 6c̄� c̄2�2

m1(c̄,�)(�� 1)
Bc(1) + 12

3� 3c̄+ c̄2

�m1(c̄,�)(�� 1)
Bc(�)

+ 12
c̄2(3� 3c̄+ c̄2)

m1(c̄,�)(�� 1)

Z 1

0
Bc(r)dr � 12

c̄2(3� 3c̄+ c̄2)

�m1(c̄,�)(�� 1)

Z �

0
Bc(r)dr

+ 18
c̄3(c̄�+ 2� c)

m1(c̄,�)

Z �

0
rBc(r)dr + 6

c̄2(�3c̄2 + 6c̄� 6 + c̄2�2)

m1(c̄,�)(�� 1)

Z �

0
rBc(r)dr

+ 12
c̄2(3� 3c̄+ c̄2)

�m1(c̄,�)(�� 1)

Z �

0
rBc(r)dr

◆
,

(2.27)

where 1(·) is the indicator function.

We will consider two unit root test statistics, one is based on the autoregressive coe�cient

and the other is the usual t statistic. There are two ways to construct these test statistics.

First, we can use the Said-Dickey tests from the following regressions:

�y
⌧µ
t = ↵y

⌧µ
t�1 +

pX

j=1

aj�y
⌧µ
t�j + ⇠t, (2.28)

�y⌧�t = ↵y⌧�t�1 +
pX

j=1

aj�y⌧�t�j + ⇠t, (2.29)

where ↵ = ⇢� 1. Now, the test statistics are

�1 =
T (⇢̂� ⇢)

1�
Pp

j=1 âj
, (2.30)
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�2 = t⇢ =
⇢̂� ⇢

ŝ⇢
, (2.31)

where ŝ⇢ is the standard error of ⇢̂. A second alternative is to use the Phillips-Perron type unit

root tests. The Phillips-Perron tests are based on the following regressions:

�y
⌧µ
t = ↵y

⌧µ
t�1 + vt, (2.32)

�y⌧�t = ↵y⌧�t�1 + vt. (2.33)

The Phillips-Perron type unit root test statistics are then defined by

�⇤1 = T (⇢̂� ⇢)� (1/2)(�̂2 � �̂2
v)

✓
T�2

TX

t=1

y⌧i
2

t�1

◆�1

, (2.34)

�⇤2 =
�
�̂/�̂v

�
t⇢ � (1/2)(�̂2 � �̂2

v)

"✓
T�2

TX

t=1

y⌧i
2

t�1

◆1/2
#�1

. (2.35)

where i = µ, �. The Said-Dickey and the Phillips-Perron type unit root test statistics are

asymptotically equivalent, but, we will state the asymptotic distributions of the tests in terms

of the Phillips-Perron tests which are given by

Theorem 2.3. Let {ut} be a stochastic process defined in (1.2) satisfying the Condition 1.1.
Assume that {vt} satisfy the conditions in Assumption 1.1. Let � = TB/T , and ⇢ = 1 + c/T .
If dt is given by (1.9), then,

�⇤1 =) c+

✓Z 1

0
B

⌧µ
c (r)dB(r)

◆✓Z 1

0
B

⌧µ
c (r)2dr

◆�1

, (2.36)

�⇤2 =)
 ✓Z 1

0
B

⌧µ
c (r)dB(r)

◆✓Z 1

0
B

⌧µ
c (r)2dr

◆�1

+ c

! Z 1

0
B

⌧µ
c (r)2dr

!1/2

. (2.37)

If dt is given by (1.10), then,

�⇤1 =) c+

✓Z 1

0
B⌧�

c (r)dB(r)

◆✓Z 1

0
B⌧�

c (r)2dr

◆�1

, (2.38)

�⇤2 =)
 ✓Z 1

0
B⌧�

c (r)dB(r)

◆✓Z 1

0
B⌧�

c (r)2dr

◆�1

+ c

! Z 1

0
B⌧�

c (r)2dr

!1/2

. (2.39)

Proof. See Appendix.

We observe that the unit root test statistics �⇤1 and �⇤2 are invariant to the shift fraction

� in case of a level shift. Thus, the tests have the same asymptotic distributions irrespective

of the time of the shift. This is an important result since this invariance property makes the

unit root test statistics �⇤1 and �⇤2 applicable to more general cases and easily extendible. We

will introduce some of these extensions later in this chapter. Further, because of this invariance

property, the same critical values are valid in a variety of cases for the level shift model.

12



However, in the case of the trend shift the asymptotic distributions of the test statistics �⇤1

and �⇤2 do depend on the shift fraction �. Therefore, the critical values of the test statistics

should be tabulated for di↵erent values of � for the trend shift model. Although, the asymptotic

distributions of the test statistics in the case of a level shift do not depend on the shift fraction

�, the assumption of an exogenous shift point play an important role in deriving the asymptotic

power functions of the test statistics. Namely, asymptotic power functions are obtained over a

fixed value of the shift fraction �.

3 Extensions to More General Cases

The unit root test statistics �⇤1 and �⇤2 can also be applied to more general cases than the case

of a single shift at a known time. In this section, we extend the tests to three more cases.

First, the models set out in (1.9) and (1.10) are the so called “additive outliers” models in

which the shifts in the deterministic component of the series have an instantaneous e↵ect. We

generalize the unit root test statistics �⇤1 and �⇤2 to the “innovational outliers” models in which

the e↵ect of the shifts in the deterministic component of the series is assumed to be gradual.

Second, we relax the assumption of a single shift and consider models with multiple shifts at

known times. The assumption of exogenous shift point has been criticized for several reasons.

For instance, Chiristiano (1992) criticizes the exogenous shift point assumption by arguing that

it is “pretesting” the data. He further argues that conventionally computed critical values

overstate the likelihood of the STS alternatives. The significance of these type of critics will

retain their validity as long as the distributions of the test statistics depend on the preset shift

point TB and it is assumed that the TB is exogenously determined. Our third generalization

of the test statistics �⇤1 and �⇤2 allows endogenous shift points and, thus, resolves the problems

associated with pretesting or the exogenous shift point assumption.

3.1 Innovational Outliers Model

One main drawback of the level and trend shift models examined above is that they assume that

the e↵ects of the shifts in the trend function occur instantaneously. Such an assumption may

not be appealing for some applications. For instance, the Great Crash was not an instantaneous

event. In order to overcome this di�culty, one may use the so called innovational outliers model

in which the response of the economy to the shifts in the deterministic component of the series

is modeled as a gradual event. Perron (1989) also addresses the same issue. He suggests the

following specification to model the gradual response of the economy to the shifts in the trend

13



function:

dt = µ+ �t+ ✓�(L)Dt, (3.40)

where �(L) is a stationary and invertible lag polynomial in the lag operator L.

Perron (1989) assumes that the economy responds to shifts in the trend function in the same

way as it responds to any other shock. This amounts to the imposition of some restrictions on

the lag structure �(L). Since there is no reason to believe that the transitional dynamics of the

economy does not change in times of the extreme events such as the Great Crash and oil price

shocks, we relax Perron’s assumption and impose no restriction on the lag structure �(L).

Let �(L) be given by

�(L) = �0 + �1L+ · · ·+ �kL
k.

Using this specification, we can define the trend function in the following way:

dt = (µ, �,↵0)(1, t, c0t)
0 = �0zt, (3.41)

where ↵ = (↵0,↵1, . . . ,↵k)0 is a (k + 1)-dimensional parameter vector, ct = (Dt, . . . , Dt�k)0 is

a vector containing k + 1 shift dummies Dt�i (i = 0, 1, . . . , k), � = (µ, �,↵0)0 with dimension

k + 3, and zt = (1, t, c0t)
0 with dimension k + 3. Let,

ht = ��1
T zt, (3.42)

where ��1
T is a (k + 3)⇥ (k + 3) diagonal scaling matrix such that

��1
T z[Tr] =) h(r). (3.43)

For instance, if Dt�i are k + 1 level shift dummies, then,

��1
T =

2

6666666664

T�1/2 0 0 0 . . . 0

0 T�3/2 0 0 . . . 0

0 0 T�1/2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . T�1/2

3

7777777775

(3.44)

If Dt�i are k + 1 trend shift dummies, then, we define ��1
T by

��1
T =

2

6666664

T�1/2 0 0 . . . 0

0 T�3/2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . T�3/2

3

7777775
(3.45)

The elements of the matrix ht involve sums of various powers of deterministic trends. We

state the following results that apply to these sums without proof.
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Fact 3.1.

TX

t=1

t = (1/2)T (T + 1) = O(T 2) T�2
TX

t=1

t �! 1/2 (3.46a)

TX

t=1

t2 = (1/6)T (T + 1)(2T + 1) = O(T 3) T�3
TX

t=1

t2 �! 1/3 (3.46b)

TX

t=1

t3 =
�
(1/2)T (T + 1)

�2
= O(T 4) T�4

TX

t=1

t3 �! 1/4 (3.46c)

TX

t=1

t4 = (1/6)T (T + 1)(2T + 1)

⇥
h
(1/5)

�
3T + (T + 1)� 1

�i
= O(T 5)

T�5
TX

t=1

t4 �! 1/5 (3.46d)

The expressions in Fact 3.1 can be generalized as

TX

t=1

tn�1 = v1T + v2T
2 + · · ·+ vnT

n, (3.47a)

T�n
TX

t=1

tn�1 �! 1/n. (3.47b)

This generalization can easily be verified using the transformation r = 1/T, 2/T, . . . , 1, r 2 [0, 1].

Then,

T�1
TX

t=1


t

T

�n�1

�!
Z 1

0
rndr =

rn

n

�1

0

=
1

n
r 2 [0, 1], t = 1, . . . , T. (3.48)

Using the results from Fact 3.1 and (3.48), it is simple to establish that

TX

t=1

hth
0
t =

Z 1

0
h[Tr]h

0
[Tr]dr + o(1) =)

Z 1

0
h(r)h(r)0dr. (3.49)

From Lemma 1.1 and Lemma 1.2, we have

T�1
TX

t=1

htut =) �

Z 1

0
Bc(r)h(r)dr, (3.50)

T�1
TX

t=1

ht�ut =) �

Z 1

0
dBc(r)h(r)dr, (3.51)

T�1
TX

t=1

htvt =) �

Z 1

0
dBc(r)h(r)dr. (3.52)

Since models involve detrending, first we derive GLS biases for the trend estimation:

�T (�̃ � �) =

✓ TX

t=1

h̃th̃
0
t

◆�1✓ TX

t=1

h̃tũt

◆
. (3.53)

Define the detrended process:

y
⌧µ
t = uµt �

 ✓ TX

t=1

h̃
µ
t h̃

µ0

t

◆�1✓ TX

t=1

h̃
µ
t ũ

µ
t

◆!0

h̃
µ
t (3.54)
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for the level shift model, and

y⌧�t = u�t �
✓ TX

t=1

h̃
�
t h̃

�0

t

◆�1✓ TX

t=1

h̃
�
t ũ

�
t

◆!0

h̃
�
t (3.55)

for the trend shift model. Using (3.49)-(3.52) we can establish that

T 1/2�T (�̃ � �) =)
✓Z 1

0
h̃(r)h̃(r)0dr

◆�1✓Z 1

0
Bc(r)h̃(r)dr

◆
. (3.56)

Having established the limiting distributions of the GLS bias terms, we can derive the

limiting values of the detrended processes y
⌧µ
t and y⌧�t , then, the asymptotic distributions of the

test statistics are simple to obtain from these limits.

Theorem 3.1. Let {ut} be a stochastic process defined in (1.2) satisfying the Condition 1.1.
Assume that {vt} satisfy the conditions in Assumption 1.1. Let dt be as defined in (3.41) with
Dt�i defined by Dt�i = {0|t  (TB + i), 1|t > (TB + i)} for i = 0, 1, . . . , k, � = TB/T , and
⇢ = 1+c/T , then, T�1/2y

⌧µ
t =) �B

⌧µ
c (r), where B

⌧µ
c (r) is defined in (2.26), and the asymptotic

distributions of the test statistics �⇤1 and �⇤2 are given by (2.36) and (2.37).

Proof. See Appendix.

It was shown before that the test statistics �⇤1 and �⇤2 are invariant to ✓ and � in the case of

a level shift assuming that the economy responds to shifts in the trend function instantaneously.

The result in Theorem 3.1 shows that the invariance property of the test statistics �⇤1 and �⇤2

to the nuisance parameters � and ↵ still holds, if we assume that the economy responds to the

shifts in the trend function in the form of a change in the mean of the series gradually rather

than instantaneously. Therefore, the asymptotic distributions of the test statistics �⇤1 and �⇤2

are still given by (2.36) and (2.37). This means that we can still use the same critical values

even though the detrending regression includes additional lags of the level shift dummy Dt.

In contrary to the level shift model, the invariance property of the tests is not preserved for

the trend shift model. The asymptotic distributions of the tests depend on the shift fraction

� and in general additional lags of the trend shift dummy. However, the dependence on the

additional lags can be removed by a simple modification. Let

D�
t = {0|t  TB, t� TB|t > TB}, (3.57)

and,

Dµ
t = {0|t  TB, 1|t > TB}. (3.58)

Using the relationship D�
t � D�

t�1 = Dµ
t , we can replace the additional lags of the trend shift

dummy D�
t by the additional lags of the level shift dummy Dµ

t . Thus, we redefine ct by
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ct = (D�
t , D

µ
t , D

µ
t�1, . . . , D

µ
t�k+1)

0. Since the tests are invariant to the level shift dummies Dµ
t�i

(i = 0, 1, . . . , k � 1) a significant simplification is achieved.

Theorem 3.2. Let {ut} be a stochastic process defined in (1.2) satisfying the Condition 1.1.
Assume that {vt} satisfy the conditions in Assumption 1.1. Let dt be as defined in (3.41) with
ct defined by ct = (D�

t , D
µ
t , D

µ
t�1, . . . , D

µ
t�k+1)

0, � = TB/T , and ⇢ = 1+c/T , then, T�1/2y⌧�t =)
�B⌧�

c (r), where B⌧�
c (r) is defined in (2.27), and the asymptotic distributions of the test statistics

�⇤1 and �⇤2 are given by (2.38) and (2.39).

Proof. See Appendix.

The important result of Theorem 3.1 and Theorem 3.2 is that the test statistics �⇤1 and �⇤2

have the same asymptotic distributions under the innovational outliers model for both the level

and trend shift models. For the level shift model invariance to the innovational outliers assump-

tion is a natural property of the test statistics. However, the tests are in general not invariant

to the inclusion of additional lags of the trend shift dummy. The invariance in Theorem 3.2 is

achieved by transforming the regression equations using the relationship D�
t �D�

t�1 = Dµ
t .

3.2 Multiple Level and Trend Shifts

Another extension of the unit root test statistics �⇤1 and �⇤2 is to allow multiple shifts. Since the

test statistics are invariant to level shifts, extension to multiple shifts for the level shift model

does not pose any di�culty. Allowing multiple shifts in the trend shift model, however, requires

further considerations.

Assume that there are q level or trend shifts at times TB1 , TB2 , . . . , TBq . Since TBk/T �! �k

for k = 1, 2, . . . , q, let � = (�1, . . . ,�q)0 where �k 2 (0, 1) for k = 1, 2, . . . , q. Now, let the

deterministic component be given by

dt = (µ, �,↵0)(1, t, c0t)
0 = �0zt, (3.59)

where ↵ = (↵1,↵2, . . . ,↵q)0 is a q-dimensional parameter vector, ct = (DTB1
, . . . , DTBq

)0 is a

vector containing q shift dummies DTBk
(k = 1, 2 . . . , q), � = (µ, �,↵0)0 with dimension q + 2,

and zt = (1, t, c0t)
0 with dimension q + 2. Let,

gt = ��1
T zt (3.60)

where ��1
T is a (q + 2)⇥ (q + 2) diagonal scaling matrix such that

��1
T z[Tr] =) g(r). (3.61)
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For the level shift model where DTBk
are q level shift dummies, ��1

T is given by

��1
T =

2

6666666664

T�1/2 0 0 0 . . . 0

0 T�3/2 0 0 . . . 0

0 0 T�1/2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . T�1/2

3

7777777775

(3.62)

For the q trend shift dummies DTBk
, we define ��1

T by

��1
T =

2

6666664

T�1/2 0 0 . . . 0

0 T�3/2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . T�3/2

3

7777775
(3.63)

Then, from the results of Fact 3.1 and (3.48), we can readily show that

TX

t=1

gtg
0
t =

Z 1

0
g[Tr]g

0
[Tr]dr + o(1) =)

Z 1

0
g(r)g(r)0dr. (3.64)

As in the innovational outliers model, we have

T�1
TX

t=1

gtut =) �

Z 1

0
Bc(r)g(r)dr, (3.65)

T�1
TX

t=1

gt�ut =) �

Z 1

0
dBc(r)g(r)dr, (3.66)

T�1
TX

t=1

gtvt =) �

Z 1

0
dBc(r)g(r)dr, (3.67)

from Lemma 1.1 and Lemma 1.2. The GLS biases for trend estimation are given by

�T (�̃ � �) =

✓ TX

t=1

g̃tg̃
0
t

◆�1✓ TX

t=1

g̃tũt

◆
. (3.68)

Now, the detrended processes y
⌧µ
t and y⌧�t can be obtained from

y
⌧µ
t = uµt �

 ✓ TX

t=1

g̃µ
t g̃

µ0

t

◆�1✓ TX

t=1

g̃µ
t ũ

µ
t

◆!0

g̃µ
t (3.69)

for the level shift model, and

y⌧�t = u�t �
✓ TX

t=1

g̃�
t g̃

�0
t

◆�1✓ TX

t=1

g̃�
t ũ

�
t

◆!0

g̃�
t (3.70)

for the trend shift model. The results of (3.64)-(3.67) allow us to establish

T 1/2�T (�̃ � �) =)
✓Z 1

0
g̃(r)g̃(r)0dr

◆�1✓Z 1

0
Bc(r)g̃(r)dr

◆
. (3.71)
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Having established the limiting distribution of the GLS bias terms, we can derive the limiting

values of the detrended processes y
⌧µ
t and y⌧�t under multiple shifts. Then, the asymptotic

distributions of the test statistics �⇤1 and �⇤2 are simple to obtain from these limits.

Theorem 3.3. Let {ut} be a stochastic process defined in (1.2) satisfying the Condition 1.1.
Assume that {vt} satisfy the conditions in Assumption 1.1. Let dt be as defined in (3.59) with
DTBk

defined by DTBk
= {0|t  TBk , 1|t > TBk} for k = 1, 2, . . . , q. Define �k = TBk/T and

⇢ = 1+c/T , then, T�1/2y
⌧µ
t =) �B

⌧µ
c (r), where B

⌧µ
c (r) is defined in (2.26), and the asymptotic

distributions of the test statistics �⇤1 and �⇤2 are given by (2.36) and (2.37).

Proof. See Appendix.

The result in Theorem 3.3 shows that the invariance property of the test statistics �⇤1 and

�⇤2 is preserved, if a single level shift at a known time is replaced by multiple level shifts at

known times. Thus, the asymptotic distributions of the test statistics are still given by (2.36)

and (2.37) and the same critical values can be used even though we allow multiple level shifts.

The invariance property of the tests is not preserved for the trend shift model once multiple

trend shifts are allowed. The asymptotic distributions of the test statistics �⇤1 and �⇤2 depend

on the shift fractions �k.

Theorem 3.4. Let {ut} be a stochastic process defined in (1.2) satisfying the Condition 1.1.
Assume that {vt} satisfy the conditions in Assumption 1.1. Let dt be as defined in (3.59)
with ct defined by ct = (DTB1

, . . . , DTBq
)0 where DTBk

= {0|t  TBk , t � TBk |t > TBk} for

k = 1, 2, . . . , q. Define �k = TBk/T and ⇢ = 1 + c/T , then, T�1/2y⌧�t =) �B̃⌧�
c (r), and the

asymptotic distributions of the test statistics �⇤1 and �⇤2 are given by

�⇤1 =) c+

✓Z 1

0
B̃⌧�

c (r)dB(r)

◆✓Z 1

0
B̃⌧�

c (r)2dr

◆�1

, (3.72)

�⇤2 =)
 ✓Z 1

0
B̃⌧�

c (r)dB(r)

◆✓Z 1

0
B̃⌧�

c (r)2dr

◆�1

+ c

! Z 1

0
B̃⌧�

c (r)2dr

!1/2

, (3.73)

where

B̃⌧�
c (r) = Bc(r)�

 ✓Z 1

0
g̃�(r)g̃�(r)0dr

◆�1✓Z 1

0
Bc(r)g̃

�(r)dr

◆!0

g̃�(r). (3.74)

Proof. See Appendix.

As in the single trend shift case, the asymptotic distributions of the test statistics �⇤1 and

�⇤2 depend on the shift fractions �k. This is an unappealing feature since tabulating the critical

values of the test statistics becomes quite burdensome for large q. Park and Sung (1994) describe

a simple method to remove the shift fraction dependency of the Perron’s tests. Unfortunately,

this is only valid for c = 0. There is no useful transformation that removes the shift point

dependency as long as c 6= 0. For this reason, it is simpler to treat the shift point as endogenous
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and develop sequential unit root tests so that all possible trend shifts are taken into account.

This is the subject of the next section.

3.3 Endogenous Shift Point

In this section, we relax the exogenous shift point assumption and assume that the process {yt}

can be represented with a level or trend shifts at unknown points in time under the alternative

hypotheses. This extension is similar to the endogenous shift point model studied in Perron

(1990b), Banerjee et al. (1992), Perron and Vogelsang (1992), and Zivot and Andrews (1992).

Although there are several ways to model the endogenous shift point, the method we use is

to compute the test statistics �⇤1 and �⇤2 sequentially over the full sample and choose the shift

point such that the null hypothesis of a unit root is given the least weight. Test statistics are

sequentially computed over the full sample by incrementing the time of the shift by a factor

of one at each step. We use the largest window possible to compute these sequential test

statistics. Thus, if the lag truncation parameter in the regression is p, then, the largest window

is [p+ 2, T � 1] for a sample size of T . Thus, one computes T � (k+ 2) statistics over a sample

size of T sequentially increasing the shift point by a factor of one and chooses the minimum of

the sequence of the values of the tests so that the shift point chosen gives the least favorable

result to the null hypothesis of a unit root.

Since � 2 (0, 1) is treated to be endogenous, some changes in our notation are required. Let

the deterministic component be given by

dt = (µ(�), �(�), ✓(�))(1, t,Dt(�))
0 = �(�)0zt(�) (3.75)

where Dt(�) = {0|t  �T, 1|t > �T} for a level shift and Dt(�) = {0|t  �T, t� �T |t > �T} for

a trend shift. Let,

gt(�) = ��1
T zt(�), (3.76)

where ��1
T is a 3⇥ 3 diagonal scaling matrix such that

��1
T z[Tr](�) =) g(r,�). (3.77)

Here, ��1
T is defined as

��1
T =

2

6664

T�1/2 0 0

0 T�3/2 0

0 0 T�1/2

3

7775
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for the level shift model, and

��1
T =

2

6664

T�1/2 0 0

0 T�3/2 0

0 0 T�3/2

3

7775

for the trend shift model.

The GLS biases (�̃(�)� �(�)) can be expressed as

�T (�̃(�)� �(�)) =

✓ TX

t=1

g̃t(�)g̃t(�)
0
◆�1✓ TX

t=1

g̃t(�)ũt(�)

◆
. (3.78)

The detrended processes y
⌧µ
t (�) and y⌧�t (�) can be obtained from

y
⌧µ
t (�) = uµt (�)�

 ✓ TX

t=1

g̃µ
t (�)g̃

µ
t (�)

0
◆�1✓ TX

t=1

g̃µ
t (�)ũ

µ
t (�)

◆!0

g̃µ
t (�) (3.79)

for the level shift model, and

y⌧�t (�) = u�t (�)�
✓ TX

t=1

g̃�
t (�)g̃

�
t (�)

0
◆�1✓ TX

t=1

g̃�
t (�)ũ

�
t (�)

◆!0

g̃�
t (�) (3.80)

for the trend shift model.

As in the previous sections, we have the following result:

T 1/2�T (�̃(�)� �(�)) =)
✓Z 1

0
g̃(r,�)g̃(r,�)0dr

◆�1✓Z 1

0
Bc(r)g̃(r,�)dr

◆
. (3.81)

For a one sided test of the null hypothesis H0 : ⇢ = 1, let �inf be the value of � that gives

the least favorable result to the null. Then, we define the test statistics as follows:

�⇤1(�inf) = inf
�2⇤

�⇤1(�), (3.82)

�⇤2(�inf) = inf
�2⇤

�⇤2(�), (3.83)

where ⇤ is a closed subset of (0, 1).

Theorem 3.5. Let {ut} be a stochastic process defined in (1.2) satisfying the Condition 1.1.
Assume that {vt} satisfy the conditions in Assumption 1.1. Let dt be as defined in (3.75) with
Dt(�) = {0|t  �T, 1|t > �T} for a level shift and Dt(�) = {0|t  �T, t � �T |t > �T} for a
trend shift. Let �inf be the value of the � 2 ⇤ that minimizes the test when a small value of the
statistic leads to the rejection of the null H0 : ⇢ = 1, and assume that ⇢ = 1 + c/T , then,

inf
�2⇤

�⇤1(�) =) inf
�2⇤

 
c+

✓Z 1

0
B

⌧µ
c (r,�)dB(r)

◆✓Z 1

0
B

⌧µ
c (r,�)2dr

◆�1
!
, (3.84)

inf
�2⇤

�⇤2(�) =) inf
�2⇤

  ✓Z 1

0
B

⌧µ
c (r,�)dB(r)

◆✓Z 1

0
B

⌧µ
c (r,�)2dr

◆�1

+ c

!

⇥
 Z 1

0
B

⌧µ
c (r,�)2dr

!1/2! (3.85)
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for the level shift model, and

inf
�2⇤

�⇤1(�) =) inf
�2⇤

 
c+

✓Z 1

0
B⌧�

c (r,�)dB(r)

◆✓Z 1

0
B⌧�

c (r,�)2dr

◆�1
!
, (3.86)

inf
�2⇤

�⇤2(�) =) inf
�2⇤

  ✓Z 1

0
B⌧�

c (r,�)dB(r)

◆✓Z 1

0
B⌧�

c (r,�)2dr

◆�1

+ c

!

⇥
 Z 1

0
B⌧�

c (r,�)2dr

!1/2! (3.87)

for the trend shift model, where

B̃
⌧µ
c (r) = Bc(r,�)�

 ✓Z 1

0
g̃µ(r,�)g̃µ(r,�)0dr

◆�1✓Z 1

0
Bc(r)g̃

µ(r,�)dr

◆!0

g̃µ(r,�), (3.88)

B̃⌧�
c (r) = Bc(r,�)�

 ✓Z 1

0
g̃�(r,�)g̃�(r,�)0dr

◆�1✓Z 1

0
Bc(r)g̃

�(r,�)dr

◆!0

g̃�(r,�). (3.89)

Proof. See Appendix.

4 Finite Sample Analysis

To investigate the finite sample properties and sensitivity of the estimators to the shift frac-

tion � and di↵erent sample sizes we designed some Monte Carlo experiments under several

configurations for both level and trend shift models.

For the level shift model 10,000 replications of a series {yt} are generated by

yt = µ1 + �t+ (µ2 � µ1)Dt + ut, (4.90a)

ut = ⇢ut�1 + "t "t ⇠ N(0,�2
"), (4.90b)

Dt = {0|t  TB, 1|t > TB} . (4.90c)

Similarly, the trend shift model is examined by generating 10,000 replications of a series {yt}

according to

yt = µ+ �1t+ (�2 � �1)Dt + ut, (4.91a)

ut = ⇢ut�1 + "t "t ⇠ N(0,�2
"), (4.91b)

Dt = {0|t  TB, t� TB|t > TB} . (4.91c)

We designed two types of experiments. Experiment 1 is designed to analyze the sensitivity

of the estimators to the shift fraction � for a given sample size T . Experiment 2 is designed

to analyze the finite sample properties of the estimators by varying T and keeping � constant.

These experiments are parameterized as follows :

Experiment 1:
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µ = µ1 = 0, � = �1 = 1, T = 100, ⇢ = 1,

µ2 = �1, �2 = .8,

� = {.15, .50, .85}.

Experiment 2:

µ = µ1 = 0, � = �1 = 1, � = .50, ⇢ = 1,

µ2 = �1, �2 = .8,

T = {50, 100, 250, 500}.

For each configuration estimates of the parameters are obtained from the following regres-

sions:

yt = µ̂+ �̂t+ ✓̂Dt + ût, (4.92)

ût = ⇢̂ût�1 + êt. (4.93)

Frequency plots of the Monte Carlo estimates are given in Figure 1, Figure 2, Figure 3, and

Figure 4 for µ̂, �̂, ✓̂, and ⇢̂, respectively. Several observations are in stand from these frequency

plots.

None of the estimators are sensitive to the break fraction � in case of a level shift. The

estimators µ̂ and ⇢̂ are also insensitive to � when there is a trend shift. However, �̂ and ✓̂ are

sensitive to � in terms of the variance when there is a trend shift. This is an expected result

since for small � these two estimators would be highly correlated. All estimators expect ⇢̂ has

a symmetric distribution for both level and trend shift models and across all � and T . All

estimators except ⇢̂ show consistency and e�ciency and converge to their true values as the

sample size increases. As expected there is an e�ciency gain from the increased sample size for

all estimators.

The estimator µ̂ is not sensitive to the type of shift. It has the same distribution for both

level and trend shift models. The estimators �̂ and ✓̂ show sensitivity to the type of shift. They

have some size sensitivity to � when there is a trend shift, but they are insensitive to � when

the shift is a level shift. This confirms our analytical results: The estimators will depend on

� for a trend shift, but are asymptotically independent of � for a level shift. It is surprising

that the independence from � is preserved even in sample sizes as small as 50 for the level shift

model.

The estimator ⇢̂ shows very little sensitivity to the shift fraction � when there is a trend

shift. However, it is invariant to the shift fraction � when there is a level shift. As it is well
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Figure 1: Finite Sample Distributions of µ̂
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Figure 2: Finite Sample Distributions of �̂
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Figure 3: Finite Sample Distributions of ✓̂

26



Figure 4: Finite Sample Distributions of ⇢̂
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known, ⇢̂ shows a large bias in small samples and right skewed. It is interesting that a sample

size as large as 500 is needed for ⇢̂ to get close to its true value. However, a small bias still

remains even with a sample size of 500 or more.

5 Asymptotic and Finite Sample Critical Values of the Tests

In this section, we tabulate the asymptotic and finite sample critical values of the test statistics

�⇤1, inf�2⇤ �
⇤
1(�), �

⇤
2, and inf�2⇤ �⇤2(�).

In order to tabulate the critical values the value of c̄ should be determined. Elliot et al.

(1992) derived asymptotic power function of a POI test under local-to-unity asymptotics. When

the deterministic component is composed of a constant and a linear trend they show that the

local asymptotic power function is given by ⇡⌧µ(c, c̄) = P [ ⌧µ(c, c̄) < b⌧µ(c̄)], where b⌧µ(c̄) is a

constant and  ⌧µ(c, c̄) is given by

 ⌧µ(c, c̄) = c̄2
Z 1

0
B

⌧µ
c (r)dr + (1� c̄)B

⌧µ
c (1)2, (5.94)

where

B
⌧µ
c (r) = Bc(r)� r

✓
3

c̄2

c̄2 � 3c̄+ 3

Z 1

0
rBc(r)dr + 3

1� c̄

c̄2 � 3c̄+ 3
Bc(1)

◆
.

The power envelope ⇧⌧µ(c) = ⇡⌧µ(c, c) defines an upper bound for the local asymptotic

power function. This is an upper bound for any one sided test of H0 : ⇢ = 1. For the level shift

model the test statistics �⇤1 and �⇤2 have the same asymptotic power function as the one derived

by Elliot et al. (1992). For the trend shift model the local asymptotic power function is given

by ⇡⌧�(c, c̄) = P [ ⌧�(c, c̄) < b⌧�(c̄)], where b⌧�(c̄) is a constant.  ⌧�(c, c̄) is given by

 ⌧�(c, c̄) = c̄2
Z 1

0
B⌧�

c (r)dr + (1� c̄)B⌧�
c (1)2, (5.95)

where B⌧�
c (r) is defined in (2.27). Thus, the relevant power envelope for the test statistics �⇤1

and �⇤2 in the presence of a trend shift is given by ⇧⌧�(c) = ⇡⌧�(c, c).

The choice of c̄ is made in such a way that the asymptotic power functions of the test

statistics are tangent to the power envelope. The value c̄ = �13.5 determined by Elliot et al.

(1992) is used for the level shift model. For the trend shift model a grid search over c̄ = [�8,�30]

reveals that the tangency also occurs at approximately c̄ = �13.5. Thus, we use c̄ = �13.5 for

both models.

Finite sample critical values of the �⇤1 and �⇤2 are obtained from a Gaussian random walk

using the finite sample approximations of the corresponding test statistics under the alternative
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Table 1: Critical Values of the �⇤1 and inf�2⇤ �⇤1(�) for the Level Shift Model

T 1% 5% 10% 25% 75% 90% 95% 99%

A. inf�2⇤ �⇤1(�)

-36.94 -29.76 -25.88 -20.11 -10.63 -7.48 -6.17 -4.14

B. �⇤1 for a fixed �

50 -23.31 -17.57 -14.93 -11.07 -5.09 -3.37 -2.56 -1.35
100 -23.81 -17.37 -14.57 -10.41 -4.32 -2.70 -1.97 -0.80
200 -23.51 -17.15 -14.06 -9.89 -3.87 -2.29 -1.60 -0.59
500 -23.35 -16.99 -13.94 -9.52 -3.49 -1.98 -1.31 -0.33
1 -23.39 -16.73 -13.59 -9.30 -3.39 -1.89 -1.24 -0.30

Table 2: Critical Values of the �⇤2 and inf�2⇤ �⇤2(�) for the Level Shift Model

T 1% 5% 10% 25% 75% 90% 95% 99%

A. inf�2⇤ �⇤2(�)

-4.35 -3.90 -3.62 -3.18 -2.28 -1.89 -1.71 -1.38

B. �⇤2 for a fixed �

50 -3.84 -3.21 -2.90 -2.44 -1.57 -1.21 -0.98 -0.56
100 -3.62 -3.03 -2.74 -2.29 -1.40 -1.03 -0.81 -0.38
200 -3.49 -2.95 -2.65 -2.20 -1.30 -0.93 -0.70 -0.30
500 -3.43 -2.90 -2.62 -2.14 -1.23 -0.85 -0.61 -0.18
1 -3.41 -2.87 -2.57 -2.11 -1.20 -0.82 -0.58 -0.16
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Table 3: Critical Values of the �⇤1 and inf�2⇤ �⇤1(�) for the Trend Shift Model

� T 1% 5% 10% 25% 75% 90% 95% 99%

A. inf�2⇤ �⇤1(�)

-38.48 -29.78 -25.99 -19.86 -11.47 -8.93 -7.54 -5.38

B. �⇤1 for a fixed �

.50 50 -28.60 -22.75 -19.87 -15.44 -8.33 -6.10 -5.10 -3.56
.40, .60 50 -28.73 -22.67 -19.69 -15.34 -8.09 -5.87 -4.77 -3.14
.30, .70 50 -28.45 -22.32 -19.34 -14.93 -7.54 -5.28 -4.18 -2.61
.20, .80 50 -27.61 -21.57 -18.63 -14.07 -6.72 -4.56 -3.58 -2.08
.10, .90 50 -26.12 -20.01 -17.09 -12.81 -5.94 -3.93 -2.99 -1.71

.50 100 -30.25 -23.28 -20.05 -15.27 -7.74 -5.57 -4.56 -3.04
.40, .60 100 -30.23 -23.43 -20.07 -15.34 -7.68 -5.46 -4.38 -2.79
.30, .70 100 -30.08 -22.99 -19.86 -15.07 -7.38 -5.08 -4.08 -2.52
.20, .80 100 -29.51 -22.33 -18.99 -14.29 -6.73 -4.54 -3.52 -2.09
.10, .90 100 -27.85 -21.41 -18.03 -13.20 -5.90 -3.86 -2.92 -1.69

.50 200 -30.79 -23.49 -20.00 -15.08 -7.41 -5.29 -4.27 -2.81
.40, .60 200 -31.02 -23.70 -20.17 -15.09 -7.47 -5.23 -4.22 -2.80
.30, .70 200 -30.23 -23.41 -20.02 -15.11 -7.33 -5.03 -3.95 -2.30
.20, .80 200 -30.13 -22.73 -19.38 -14.44 -6.71 -4.46 -3.45 -2.02
.10, .90 200 -29.09 -21.51 -18.23 -13.37 -6.02 -3.98 -2.98 -1.59

.50 500 -31.06 -23.20 -19.65 -14.88 -7.20 -5.03 -4.04 -2.62
.40, .60 500 -32.08 -23.84 -20.17 -15.16 -7.39 -5.14 -4.12 -2.67
.30, .70 500 -30.89 -23.41 -19.92 -14.92 -7.18 -4.95 -3.99 -2.47
.20, .80 500 -31.59 -23.21 -19.65 -14.42 -6.66 -4.46 -3.45 -2.03
.10, .90 500 -29.42 -21.98 -18.54 -13.55 -5.98 -3.88 -2.96 -1.63

.50 1 -31.19 -23.40 -19.72 -14.77 -7.02 -4.88 -3.88 -2.65
.40, .60 1 -31.83 -23.73 -20.18 -15.10 -7.27 -5.07 -4.04 -2.62
.30, .70 1 -31.67 -23.73 -20.17 -14.96 -7.13 -4.90 -3.88 -2.35
.20, .80 1 -31.13 -23.31 -19.63 -14.51 -6.73 -4.51 -3.44 -1.97
.10, .90 1 -29.94 -22.19 -18.52 -13.55 -5.95 -3.89 -2.92 -1.56
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Table 4: Critical Values of the �⇤2 and inf�2⇤ �⇤2(�) for the Trend Shift Model

� T 1% 5% 10% 25% 75% 90% 95% 99%

A. inf�2⇤ �⇤2(�)

-4.45 -3.88 -3.63 -3.16 -2.35 -2.05 -1.92 -1.57

B. �⇤2 for a fixed �

.50 50 -4.42 -3.78 -3.46 -2.97 -2.08 -1.74 -1.56 -1.23
.40, .60 50 -4.42 -3.76 -3.43 -2.94 -2.02 -1.66 -1.46 -1.09
.30, .70 50 -4.38 -3.71 -3.39 -2.89 -1.92 -1.55 -1.33 -0.94
.20. .80 50 -4.28 -3.63 -3.31 -2.79 -1.79 -1.41 -1.19 -0.79
.10, .90 50 -4.12 -3.46 -3.13 -2.62 -1.68 -1.29 -1.06 -0.67

.50 100 -4.19 -3.59 -3.30 -2.83 -1.95 -1.63 -1.45 -1.13
.40, .60 100 -4.19 -3.60 -3.29 -2.83 -1.93 -1.58 -1.39 -1.03
.30, .70 100 -4.15 -3.56 -3.27 -2.80 -1.88 -1.51 -1.31 -0.93
.20. .80 100 -4.10 -3.50 -3.19 -2.72 -1.78 -1.40 -1.19 -0.79
.10, .90 100 -3.98 -3.41 -3.09 -2.60 -1.65 -1.27 -1.05 -0.67

.50 200 -4.06 -3.50 -3.22 -2.77 -1.89 -1.57 -1.40 -1.08
.40, .60 200 -4.07 -3.51 -3.22 -2.77 -1.89 -1.55 -1.36 -1.03
.30, .70 200 -4.01 -3.49 -3.21 -2.76 -1.86 -1.50 -1.29 -0.89
.20. .80 200 -4.00 -3.43 -3.15 -2.69 -1.76 -1.39 -1.18 -0.79
.10, .90 200 -3.93 -3.33 -3.05 -2.58 -1.66 -1.29 -1.07 -0.66

.50 500 -3.99 -3.42 -3.14 -2.72 -1.86 -1.53 -1.36 -1.06
.40, .60 500 -4.06 -3.47 -3.18 -2.74 -1.87 -1.53 -1.34 -1.01
.30, .70 500 -3.97 -3.44 -3.16 -2.72 -1.83 -1.49 -1.30 -0.94
.20. .80 500 -4.02 -3.41 -3.13 -2.67 -1.76 -1.39 -1.19 -0.80
.10, .90 500 -3.87 -3.32 -3.04 -2.58 -1.66 -1.28 -1.07 -0.67

.50 1 -3.96 -3.42 -3.13 -2.70 -1.83 -1.50 -1.33 -1.04
.40, .60 1 -4.01 -3.44 -3.17 -2.73 -1.86 -1.52 -1.33 -1.01
.30, .70 1 -3.99 -3.44 -3.16 -2.71 -1.83 -1.47 -1.28 -0.91
.20. .80 1 -3.96 -3.40 -3.12 -2.66 -1.77 -1.40 -1.18 -0.80
.10, .90 1 -3.88 -3.32 -3.02 -2.57 -1.65 -1.27 -1.06 -0.65
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hypothesis with 20,000 Monte Carlo replications. Asymptotic critical values of the �⇤1 and �⇤2

tests are obtained with discretized realizations of the corresponding asymptotic distributions

under the null (c = 0), using 20,000 Monte Carlo replications. We provide only asymptotic

critical values of the test statistics inf�2⇤ �⇤1(�) and inf�2⇤ �⇤2(�). We used the method described

in Zivot and Andrews (1992) to approximate the asymptotic distributions of the test statistics

inf�2⇤ �⇤1(�) and inf�2⇤ �⇤2(�). The approximations are obtained from 1,000 normal realizations

with 10,000 Monte Carlo replications.

6 Finite Sample Power of the Tests

This section investigates the finite sample size and power of the unit root test statistics �⇤1

and �⇤2 we studied in previous sections of this chapter. The power and size properties of unit

root tests in models without structural change have been investigated and it has been shown

that the power of the Dickey-Fuller type unit root test statistics are low (see Schwert (1989)).

Unit root tests such as the test statistics developed by Elliot et al. (1992) have been shown to

have good power properties against the TS alternatives they are designed for. Unfortunately,

the size and power properties of unit root tests constructed against the STS alternatives are

not known except the test statistics studied by Banerjee et al. (1992). Perron (1989), Perron

(1990b), Perron and Vogelsang (1992), Zivot and Andrews (1992), and Park and Sung (1994)

did not investigate the power and size properties of the test statistics they developed. We

investigated the power of unit root tests against the misspecified TS alternatives when the true

DGP’s were STS models by extensive Monte Carlo simulations in Balcilar (1996). In addition

to investigating the power and size properties of the unit root test statistics �⇤1 and �⇤2 we

also investigate the power and size properties of the unit root test statistics of Perron (1989)

by Monte Carlo simulations. We limit these Monte Carlo simulations to the models with a

single predetermined shift point. Computational cost of the simulations required to investigate

the power and size of the tests with endogenous shift point assumption makes it infeasible for

this study. The power and size of sequential unit root test statistics constructed against STS

alternatives were studied by Banerjee et al. (1992). They found that these sequential unit

root test statistics have good power properties against the alternatives they are designed for.

The sequential test statistics we examined in §3.3 should have approximately the same size and

power properties. We leave the investigation of the power and size properties of these sequential

unit root tests for future research.

To investigate the finite sample size and power properties of the unit root test statistics �⇤1

and �⇤2, and Perron’s test statistics t↵̃ and T (↵̃ � 1) we designed two separate Monte Carlo
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experiments under variety of parameter configurations for the level and trend shift models.

For the level shift model 10,000 replications of a series {yt} are generated by

yt = µ1 + �t+ (µ2 � µ1)Dt + ut, (6.96a)

ut = ⇢ut�1 + "t "t ⇠ N(0, 1), (6.96b)

Dt = {0|t  TB, 1|t > TB} . (6.96c)

Similarly, the trend shift model is examined by generating 10,000 replications of a series {yt}

according to

yt = µ+ �1t+ (�2 � �1)Dt + ut, (6.97a)

ut = ⇢ut�1 + "t "t ⇠ N(0, 1), (6.97b)

Dt = {0|t  TB, t� TB|t > TB} . (6.97c)

The parameter configurations used in these simulations are as follows:

T = 100, 200,

� = �1 = µ = µ1 = 1.00, TB/T = .50,

⇢ = {.20, .50, .80, 1.00},

�2 = {1, .7, .3, 0},

µ2 = {0,�5,�15,�30}.

To compute the test statistics first we detrend the data by GLS and obtain the test statistics

from a Said-Dickey type regression. Let zt = (1, t,Dt)0 and define the transformed variables z̃t

and ỹt. These transformed variables are obtained as defined in (1.12). From these detrended

series we obtain the detrended series in the following way

ũt = yt � �̃
0
z̃t, (6.98)

where

�̃ =

✓ TX

t=1

z̃tz̃
0
t

◆�1✓ TX

t=1

z̃tỹt

◆
. (6.99)

The unit root test statistics �⇤1 and �⇤2 are then computed from the following Said-Dickey

regression:

ũt = ↵̃ũt�1 +
kX

j=1

ãj�ũt�j + ẽt. (6.100)

The test statistic �⇤1 is computed from the estimate ↵̃, that is, �⇤1 = T (↵̃�1). The test statistic

�⇤2 is the usual t statistic corresponding to parameter ↵̃ in the regression (6.100). Perron’s test
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statistics are obtained in the same way by replacing ũt in (6.100) by ût which is obtained from

ût = yt � �̂
0
zt, (6.101)

where

�̂ =

✓ TX

t=1

ztz
0
t

◆�1✓ TX

t=1

ztyt

◆
. (6.102)

The lag truncation parameter k in (6.100) should be determined from the data, although,

some researchers prefer to prefix k at a controlled rate. The additional regressors �ũt�j are

included to remove the nuisance parameter dependencies of the test statistics due to the auto-

correlations in the in the data. However, it has been found that if k is chosen to be too high the

power of the unit root tests will be adversely a↵ected. There are several methods to determine

the lag truncation parameter k that can be employed in practice, among these we use the BIC

which is a common method in applied studies. We choose the value of k such that

BIC(k) = T ln(�2
e) + (k + 1) + ln(T )(k + 1) (6.103)

is minimized subject to k < 23, that is, we restrict the maximum of k to be 23. However, this

restriction was never binding.

The results of the Monte Carlo simulations for the �⇤1 and �⇤2 test statistics when there is a

level shift in the trend function are reported in Table 5. These simulations are based on 10,000

replications for sample sizes 100 and 200. For all simulations, we compute the power of the

tests at the 5 percent level and report the nominal, not size adjusted, power.

The results in Table 5 show that the test statistics �⇤1 and �
⇤
2 have a power of 1 for moderate

values of ⇢. Test statistics retain a good power for values of ⇢ as large as .80, which is a value

unit root tests most commonly fail to reject the null. There is a very small reduction in the

power of the tests, from .99 to .97, if we raise ⇢ from .50 to .80 for a sample size of 200. However,

the reduction in the power of the tests when ⇢ = .80 is more significant when the sample size

is 100. The powers of the test statistics for ⇢ = .80 is .77 in this case. However, a power of

.77 is a significant improvement over the power of the other unit root tests. We should also

note that the sample sizes as small as 100 are believed to be fairly small for unit root tests. A

significant finding from the results of these simulations is that the powers of the test statistics

�⇤1 and �⇤2 are not sensitive to the size of the level shift which shows that the GLS detrending

procedure e�ciently removes the deterministic component even at sample sizes as small as 100.

From the last two columns of Table 5 we note that the test statistics have reasonably good size

properties. The di↵erence between the empirical and theoretical sizes is at most in the order of

.02 which is negligible.
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Table 5: Size and Power of the �⇤1 and �⇤2 Tests for the Level Shift Model

⇢ .20 .50 .80 1.00
�⇤1 �⇤2 �⇤1 �⇤2 �⇤1 �⇤2 �⇤1 �⇤2

µ2 T=200
0 P 1.00 0.95 1.00 0.99 0.97 0.97 0.04 0.03

M -112.88 -8.34 -80.37 -6.97 -36.19 -4.39 -6.98 -1.72
V 1567.96 8.21 411.03 1.67 107.85 0.52 22.51 0.44

-5 P 1.00 0.95 1.00 0.99 0.97 0.97 0.04 0.03
M -113.68 -8.38 -79.97 -6.93 -35.94 -4.38 -6.97 -1.72
V 1554.53 8.20 423.32 1.74 104.64 0.51 22.63 0.43

-15 P 1.00 0.95 1.00 0.99 0.98 0.97 0.03 0.03
M -113.10 -8.34 -79.89 -6.94 -35.98 -4.38 -6.90 -1.71
V 1564.02 8.21 412.26 1.68 103.51 0.51 22.46 0.43

-30 P 1.00 0.95 1.00 0.99 0.97 0.97 0.03 0.03
M -113.60 -8.38 -80.07 -6.95 -35.96 -4.38 -6.88 -1.71
V 1556.25 8.17 410.53 1.67 105.10 0.51 21.83 0.42

T=100
0 P 1.00 0.99 1.00 0.99 0.77 0.77 0.05 0.06

M -68.45 -7.10 -46.46 -5.43 -22.60 -3.50 -8.10 -1.89
V 215.38 1.89 100.29 0.66 46.32 0.38 25.05 0.48

-5 P 1.00 0.99 1.00 0.99 0.75 0.76 0.06 0.06
M -68.63 -7.11 -46.40 -5.43 -22.43 -3.48 -8.19 -1.90
V 214.12 1.88 99.07 0.65 48.41 0.39 25.30 0.48

-15 P 1.00 0.99 1.00 0.99 0.76 0.77 0.05 0.06
M -68.39 -7.09 -46.42 -5.43 -22.46 -3.49 -8.09 -1.89
V 221.88 1.94 99.09 0.65 45.68 0.37 25.08 0.47

-30 P 1.00 0.99 1.00 0.99 0.76 0.76 0.06 0.06
M -68.54 -7.10 -46.46 -5.43 -22.60 -3.50 -8.15 -1.90
V 217.16 1.90 102.74 0.68 49.04 0.40 24.75 0.47

Notes: P shows the nominal power of the test at 5% level, M is the Monte
Carlo mean, and V is the Monte Carlo variance. All simulations
are based on 10,000 replications.
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Table 6: Size and Power of the �⇤1 and �⇤2 Tests for the Trend Shift Model

⇢ .20 .50 .80 1.00
�⇤1 �⇤2 �⇤1 �⇤2 �⇤1 �⇤2 �⇤1 �⇤2

�2 T=200
1 P 1.00 0.99 1.00 1.00 0.98 0.98 0.05 0.05

M -142.71 -10.33 -93.39 -7.73 -41.75 -4.78 -11.85 -2.36
V 728.53 3.96 262.40 0.95 96.94 0.41 36.48 0.42

.7 P 1.00 0.99 1.00 1.00 0.98 0.98 0.05 0.05
M -142.65 -10.32 -93.52 -7.74 -41.75 -4.78 -11.74 -2.35
V 733.13 3.96 260.32 0.93 97.44 0.42 36.01 0.41

.3 P 1.00 0.99 1.00 1.00 0.98 0.98 0.05 0.05
M -143.31 -10.35 -93.46 -7.74 -41.90 -4.79 -11.82 -2.35
V 707.13 3.85 261.58 0.93 98.70 0.42 37.43 0.42

0 P 1.00 0.99 1.00 1.00 0.98 0.98 0.05 0.05
M -143.44 -10.37 -93.38 -7.74 -41.96 -4.79 -11.82 -2.36
V 721.02 3.85 265.28 0.94 98.05 0.42 36.12 0.41

T=100
1 P 1.00 0.99 1.00 0.99 0.55 0.56 0.05 0.05

M -75.16 -7.67 -49.95 -5.71 -24.87 -3.71 -12.03 -2.43
V 162.74 1.44 96.41 0.62 50.67 0.39 34.60 0.43

.7 P 1.00 0.99 1.00 0.99 0.54 0.54 0.05 0.05
M -75.09 -7.66 -49.91 -5.71 -24.76 -3.70 -12.08 -2.43
V 167.09 1.48 97.94 0.62 53.74 0.41 35.10 0.44

.3 P 1.00 0.99 1.00 0.99 0.53 0.54 0.05 0.05
M -75.07 -7.66 -49.92 -5.71 -24.75 -3.70 -11.96 -2.42
V 168.46 1.49 94.93 0.61 51.64 0.39 35.01 0.44

0 P 1.00 0.99 1.00 0.99 0.54 0.55 0.05 0.05
M -75.31 -7.69 -50.06 -5.72 -24.93 -3.72 -12.05 -2.43
V 160.55 1.40 98.32 0.63 54.02 0.42 34.00 0.43

Notes: See notes to Table 5.
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Table 7: Size and Power of the Perron’s Tests

⇢ .20 .50 .80 1.00
T (e↵� 1) te↵ T (e↵� 1) te↵ T (e↵� 1) te↵ T (e↵� 1) te↵

µ2 A. Level Shift Model
0 P 1.00 1.00 1.00 1.00 0.60 0.62 0.05 0.06

M -83.60 -8.44 -55.45 -6.16 -27.93 -4.00 -12.65 -2.53
V 104.82 0.80 89.32 0.54 57.83 0.44 44.63 0.63

-5 P 1.00 1.00 1.00 1.00 0.59 0.60 0.05 0.07
M -83.68 -8.43 -55.47 -6.16 -27.81 -3.99 -12.84 -2.55
V 114.01 0.82 90.21 0.54 60.22 0.45 46.15 0.65

-15 P 1.00 1.00 1.00 1.00 0.60 0.62 0.05 0.07
M -83.63 -8.43 -55.43 -6.16 -27.91 -3.99 -12.67 -2.54
V 109.81 0.82 89.38 0.54 59.51 0.45 45.06 0.63

-30 P 1.00 1.00 1.00 1.00 0.60 0.62 0.05 0.06
M -83.56 -8.43 -55.58 -6.17 -28.03 -4.00 -12.67 -2.53
V 109.50 0.82 91.18 0.55 60.89 0.46 44.20 0.63

�2 B. Trend Shift Model
1 P 1.00 1.00 1.00 1.00 0.38 0.51 0.03 0.06

M -83.70 -8.45 -55.45 -6.16 -28.09 -4.01 -14.46 -2.74
V 102.92 0.78 89.17 0.54 58.12 0.44 43.37 0.56

.7 P 1.00 1.00 1.00 1.00 0.37 0.49 0.03 0.06
M -83.71 -8.43 -55.53 -6.17 -27.95 -4.00 -14.56 -2.74
V 114.49 0.82 92.51 0.55 60.91 0.45 45.24 0.59

.3 P 1.00 1.00 1.00 1.00 0.37 0.50 0.03 0.06
M -83.71 -8.44 -55.44 -6.16 -28.02 -4.00 -14.40 -2.73
V 109.38 0.82 88.74 0.54 58.94 0.44 44.36 0.58

0 P 1.00 1.00 1.00 1.00 0.38 0.51 0.03 0.06
M -83.66 -8.43 -55.65 -6.18 -28.23 -4.02 -14.48 -2.73
V 110.21 0.82 91.70 0.55 59.94 0.45 43.69 0.57

Notes: See notes to Table 5.

The nominal powers of the �⇤1 and �⇤2 tests computed at the 5 percent level when there is

a trend shift are reported in Table 6. When the sample size is 200, both test statistics have

an exact size and a power of 1 across all values of �2 and ⇢ except when ⇢ = .80 for which

only the power of the tests drop to .98, but the tests still have exact size. When the sample

size is reduced to 100 only the power of the tests when ⇢ = .80 are a↵ected, that is, the power

of the tests drop approximately to .55 across all values of �2. The sizes of the tests are still

exact even for a sample size as small as 100. The worsening of the power when ⇢ is high is an

expected result for small samples. However, we point out that this power is still a significant

improvement over the power of previously developed unit root tests by Perron (1989).

The nominal powers of Perron’s test statistics computed at the 5 percent level for a sample
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size of 100 are reported in Table 7. The powers of Perron’s tests are equivalent to the powers

of the �⇤1 and �⇤2 tests for small values of ⇢. However, the �⇤1 and �⇤2 tests perform significantly

better than Perron’s tests when ⇢ = .80 which is the vicinity of the values that the �⇤1 and

�⇤2 tests are designed to have good power. Particularly, the power gain over the T (e↵� 1)

test is significant. The �⇤1 test has 28 percent higher power when there is a level shift and

47 percent higher power when there is a trend shift. Surprisingly, we are able to improve the

power significantly for the trend shift model. Although, the power gain from using the �⇤2 test

rather than the te↵ test of Perron is not as high as using the �⇤1 test rather than the T (e↵� 1)

test of Perron, the improvement is still significant both for the level and trend shift models.

The power improvement of �⇤2 test over the te↵ test is around 10 percent for the trend shift

model and 25 percent for the level shift model. As the �⇤1 and �⇤2 tests, Perron tests too do not

show sensitivity to the size of either the level or the trend shifts. As for the size of the tests,

the results reveal that the �⇤2 outperforms the te↵ tests in terms of the size stability. The test

statistics �⇤1 and the T (e↵� 1) have equivalent size sensitivities. However, the size sensitivities

of all the tests we examined in this section are negligible.

7 Summary and Conclusion

If a time series undergoes a structural change either in the form of a change in the mean

of the series, a level shift, or in the form of a change in the growth rate of the series, a

trend shift, unit root tests incorrectly fail to reject the null hypothesis of a unit root when

the e↵ects of structural change is not taken into account. This study develops two unit root

test statistics with good power and size properties against alternatives that incorporate the

e↵ects of structural changes. These tests are approximately uniformly most powerful invariant.

The asymptotic distributions of the test statistics are obtained by generalizing the method

developed by Elliot et al. (1992) to models with structural change. The test statistics are

constructed from the locally generalized least squares detrended data. The generalized least

squares estimates are obtained by transforming the data according to the local alternatives. We

derive the asymptotic distributions of these test statistics using the local-to-unity asymptotic

framework of Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987), and Phillips (1987b).

The local to-unity-asymptotic framework allows us to derive the asymptotic power functions of

the test statistics. Contrary to the previously proposed unit root test statistics, the asymptotic

distributions of these test statistics do not depend on the date of the structural change for

the level shift model. This property makes the test statistics easily generalizable to more

general models. Furthermore, we derive the asymptotic distributions of the test statistics under
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multiple shifts and innovational outliers assumptions. The test statistics are also studied under

the assumption that the date of the structural change is unknown. Thus, the test statistics are

generalized to models in which the time of the structural change is treated to be endogenous.

This generalization is achieved by sequentially computing the test statistics over the full sample.

The asymptotic distributions of these sequential test statistics are also derived. We tabulate

the finite sample and asymptotic percentiles of the test statistics by Monte Carlo integration.

The finite sample properties of the estimators involved in computing the test statistics are also

examined. We find that the estimators are invariant to the shift fraction for the level shift

model even in small samples. We also find that only the estimator of the slope of the linear

time trend is sensitive to the shift fraction for the trend shift model. Power properties of the test

statistics are examined by extensive simulations. These simulations show that test statistics

provide significant power gains over the similar unit root tests.
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Appendix: Proofs

Proof of Lemma 1.1

To prove parts (g) and (h) of Lemma 1.1 let ⇢ = ec/T and generate double array

ut,T = ec/Tut�1,T + vt, t = 1, . . . , T, u0T = 0. (A.1)

Now define

Bc(r) =

Z r

0
e(r�s)cdB(s), (A.2)

where B(s) is a standard Brownian motion and Bc(r) is an Ornstein-Uhlenbeck process. Solving

(A.1), we get

ut,T =
tX

j=1

e(t�j)c/T vj .

Let XT (r) be defined by

XT (r) =
1

�
p
T
Sj�1, (j � 1)/T  r < j/T, r 2 [0, 1], (A.3)

where Sj = v1 + · · ·+ vj . Using vj = �
p
T
R j/T
(j�1)/T dXT (r), as in Phillips (1987b), we derive

T�1/2u[Tr] = �

[Tr]X

j=1

ec([Tr]�j)/T
Z j/T

(j�1)/T
dXT (s) +Op(T

�1/2)

= �

[Tr]X

j=1

Z j/T

(j�1)/T
ec(r�s)dXT (s) +Op(T

�1/2)

= �

Z r

0
ec(r�s)dXT (s) +Op(T

�1/2).

(A.4)

Note that
Z r

0
ec(r�s)dXT (s) = ec(r�s)dXT (s)

����
r

0

+ cecr
Z r

0
e�csXT (s)ds

=) XT (r) + c

Z r

0
ec(r�s)dB(s)

= Bc(r),

(A.5)

where last two steps follow from (1.6), Herrndorf’s weak convergence result, and continuous

mapping theorem. Combining these results we establish that

T�1/2u[Tr] =) �Bc(r). (A.6)

To prove part (g) of Lemma 1.1, note that T�1/2PT
t=2�ut = uT . Then, the proof follows

from setting r = 1 in (A.6).
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To prove part (h) of Lemma 1.1, we use the following identity:

T�3/2
TX

t=2

t�ut = T�3/2

✓ TX

t=2

tut �
TX

t=2

(t� 1 + 1)ut�1

◆

= T�1/2uT � T�3/2u1 � T�3/2
TX

t=2

ut�1.

(A.7)

Note that from Condition 1.1 and strong law of McLeish (1975) T�3/2u1
a.s.��! 0. Then, the

proof follows from parts (d) and (h) of Lemma 1.1, which is proven above, Herrndorf’s weak

convergence result, and continuous mapping theorem.

Proof of Lemma 1.2

To prove part (a) of Lemma 1.2, we note that using TB = �T we obtain limT!1(TB+ i)/T = �

for i = 0, 1, 2. Then the result follows from setting r = � in (A.6). To prove the rest of the

results in Lemma 1.2 we note that for any Jt we can write
PT

t=TB+2 Jt =
PT

t=1 Jt �
PTB+1

t=1 Jt.

Then, applying the results from Lemma 1.1 to each part of this expression we obtain the results

in parts (b)-(e) of Lemma 1.2.

Proof of Theorem 2.1

The proof of Theorem 2.1 involves analytic calculation of the GLS bias terms

(�̃ � �) =

✓ TX

t=1

z̃tz̃
0
t

◆�1✓ TX

t=1

z̃tũt

◆
, (A.8)

where (�̃ � �) = ((µ̃ � µ), (�̃ � �), (✓̃ � ✓))0, z̃t = (1 � ⇢̄L)(1, t,Dt)0, ũt = (1 � ⇢̄)ut, and

Dt = {0|t  TB, 1|t > TB}.

Fact .1. Noting that under GLS transformation first observation is not transformed, we can
easily verify that the elements of the moment matrix

PT
t=1 z̃tz̃

0
t can be expressed as

TX

t=1

((1� ⇢̄L))2 = 1 +
(T � 1 ) c̄2

T 2
,

TX

t=1

(1� ⇢̄L)(1� ⇢̄L)t = 1�
c̄

✓✓
1� 1

2
c̄

◆
T � 1 +

1

2
c̄

◆

T
,

TX

t=TB+1

(1� ⇢̄L)(1� ⇢̄L)Dt = � c̄

T
+

( 1� � ) c̄2

T
� c̄2

T 2
,

TX

t=1

((1� ⇢̄L)t)2 =

✓
1

3
c̄2 � c̄+ 1

◆
T + c̄� 1

2
c̄2 +

1

6

c̄2

T
,
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TX

t=TB+1

(1� ⇢̄L)t(1� ⇢̄L)Dt = 1� c̄�� c̄

✓
1� 1

2
c̄� �+

1

2
c̄�2

◆
�

c̄

✓
�1 +

1

2
c̄+

1

2
c̄�

◆

T
,

TX

t=TB+1

((1� ⇢̄L)Dt)
2 = 1 +

( 1� � ) c2

T
� c̄2

T 2
.

Fact .2. By direct calculation, elements of matrix
PT

t=1 z̃tũt are given by

TX

t=1

(1� ⇢̄L)(1� ⇢̄L)ut = u1 �
c̄
PT

t=2�ut
T

+
c̄2
PT

t=2 ut�1

T 2
,

TX

t=1

(1� ⇢̄L)t(1� ⇢̄L)ut = u1 +
TX

t=2

�ut +
c̄ (
PT

t=2�ut �
PT

t=2 t�ut �
PT

t=2 ut�1 )

T

+
c̄2 (

PT
t=2 tut�1 �

PT
t=2 ut�1 )

T 2
,

TX

t=TB+1

(1� ⇢̄L)Dt(1� ⇢̄L)ut = uTB+1 �
⇣
1 +

c̄

T

⌘
uTB �

c̄
PT

t=TB+2�ut

T

+
c̄2
PT

t=TB+2 ut�1

T 2
.

Using the results from Fact .1 we symbolically compute

✓PT
t=1 z̃tz̃

0
t

◆�1

, then the result

of this matrix inversion is multiplied by

✓PT
t=1 z̃tũt

◆
making use of the results from Fact .2.

This computation yields the bias terms (�̃��) = ((µ̃�µ), (�̃��), (✓̃�✓))0. The expressions are

very lengthy, for this reason we present these expressions in a compact form. Here, we will use

these expressions in a simplified form. Derivation of these expressions involve tedious algebra

and omitted.

From the OLS normal equations the expression for (µ̃� µ) can be written as

(µ̃� µ) =
T 6M16 + T 5M15 + T 4M14 + T 3M13 +Op(T 2)

T 6MT
, (A.9)

where M1j are polynomials in c̄ and � involving various sums of ut, ut�1, �ut, etc, and will be

defined in shorter forms later in this section, and MT is given by

MT = (�12 + 12c̄� 4c̄2) +
5X

j=1

mTjT
j�6, (A.10)

where mTj are polynomials in c̄ and �. The notation mij will be used to mean the polynomials

in c̄ and �, hereafter. The MT is a sixth degree polynomial in T involving various powers of

�̄ and c̄ The full expression for MT is very lengthy and omitted. We normalize (A.9) in the

following manner

T 1/2(µ̃� µ) =
T 1/2M16 + T�1/2M15 + T�3/2M14 + T�5/2M13 +Op(T�7/2)

MT
. (A.11)

42



Now, we will consider each term in the numerator and the denominator of (A.11) separately.

It is simple to show that

lim
T!1

MT = (�12 + 12c̄� 4c̄2)

= M.

(A.12)

From the OLS normal equations, T 1/2M16 can be written as

T 1/2M16 = T 1/2(�12 + 12c̄� 4c̄2)u1.

From this expression, we note that M16 = Mu1. Using this equality (A.11) can be rearranged

as

T 1/2(µ̃� µ� u1) =

T 1/2M16 + T�1/2M15 + T�3/2M14 + T�5/2M13 +Op(T�7/2)

MT

+
(M �MT )u1
T�1/2MT

(A.13)

Note that
(H �HT )u1
T�1/2HT

! 0, Op

⇣
T�7/2

⌘
! 0 as T ! 1. (A.14)

Remark .1. T�✏uTB

a.s.��! 0 for ✏ > 1/2, T�✏uTB+1
a.s.��! 0 for ✏ > 1/2, T�✏u1

a.s.��! 0 for ✏ > 0,

T�✏vTB+1
a.s.��! 0 for ✏ > 0, T�✏PT

t=2�ut
a.s.��! 0 for ✏ > 1/2, T�✏PT

t=2 t�ut
a.s.��! 0 for ✏ > 3/2,

T�✏PT
t=2 ut�1

a.s.��! 0 for ✏ > 3/2, T�✏PT
t=2 tut�1

a.s.��! 0 for ✏ > 5/2 by strong law of McLeish
(1975).

Using the OLS normal equations and with tedious but straightforward algebra T�1/2M15,

T�3/2M14, and T�5/2M13 can be shown as

T�1/2M15 = T�1/2
⇣
mµ

15

TX

t=2

�ut +mµ
25u1 +mµ

35(uTB+1 � uTB )
⌘

= T�1/2
⇣
mµ

15

TX

t=2

�ut +mµ
25u1 +mµ

35vTB+1

⌘
,

(A.15)

T�3/2M14 = T�3/2
⇣
mµ

14

TX

t=2

�ut +mµ
24

TX

t=2

ut�1 +mµ
34

TX

t=2

t�ut

+mµ
44u1 +mµ

54uTB +mµ
64uTB+1

⌘
,

(A.16)

T�5/2M13 = T�5/2
⇣
mµ

13

TX

t=2

�ut +mµ
23

TX

t=2

ut�1 +mµ
33

TX

t=2

t�ut

+mµ
43

TX

t=2

tut�1 +mµ
53u1 +mµ

63uTB +mµ
73uTB+1

⌘
.

(A.17)
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From Lemma 1.1, Lemma 1.2, Remark .1, Herrndorf’s weak convergence result, and contin-

uous mapping theorem, we can establish that

T�1/2M15 =) �mµ
15Bc(1), (A.18)

T�3/2M14 =) �

✓
mµ

24

Z 1

0
Bc(r)dr +mµ

34

⇣
Bc(1)�

Z 1

0
Bc(r)dr

⌘◆
, (A.19)

T�5/2M13 =) �mµ
43

Z 1

0
rBc(r)dr. (A.20)

Combining (A.18)-(A.20) in (A.13) first part of Theorem 2.1 is proven by continuous mapping

theorem.

Using the OLS normal equations the GLS bias (�̃ � �) can be decomposed as

(�̃ � �) =
T 5M25 + T 4M24 + T 3M23 +Op(T 2)

T 6MT
.

We normalize this equation to obtain

T 1/2(�̃ � �) =
T�1/2M25 + T�3/2M24 + T�5/2M23 +Op(T�7/2)

MT
, (A.21)

where

T�1/2M25 = T�1/2
⇣
m�

15

TX

t=2

�ut +m�
25u1 +m�

35(uTB+1 � uTB )
⌘

= T�1/2
⇣
m�

15

TX

t=2

�ut +m�
25u1 +m�

35vTB+1

⌘
,

(A.22)

T�3/2M24 = T�3/2
⇣
m�

14

TX

t=2

�ut +m�
24

TX

t=2

ut�1 +m�
34

TX

t=2

t�ut +m�
44

TX

t=TB+2

�ut

+m�
54u1 +m�

64uTB+1 +m�
74uTB

⌘
,

(A.23)

T�5/2M23 = T�5/2
⇣
m�

13

TX

t=2

�ut +m�
23

TX

t=2

ut�1 +m�
33

TX

t=2

t�ut +m�
43

TX

t=2

tut�1

+m�
53

TX

t=TB+2

�ut +m�
63

TX

t=TB+2

ut�1 +m�
73u1 +m�

83uTB+1 +m�
93uTB

⌘
.

(A.24)

Remark .2. T�✏PT
t=TB+2�ut

a.s.��! 0 for ✏ > 1/2, T�✏PT
t=TB+2 t�ut

a.s.��! 0 for ✏ > 3/2,

T�✏PT
t=TB+2 ut�1

a.s.��! 0 for ✏ > 3/2, T�✏PT
t=TB+2 tut

a.s.��! 0 for ✏ > 5/2 by strong law of
McLeish (1975).

A straightforward application of Lemma 1.1, Lemma 1.2, Remark .1, Remark .2, Herrndorf’s

weak convergence result, and continuous mapping theorem yields

T�1/2M25 =) �m�
15Bc(1), (A.25)
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T�3/2M24 =) �

✓
m�

24

Z 1

0
Bc(r)dr +m�

34

⇣
Bc(1)�

Z 1

0
Bc(r)dr

⌘◆
, (A.26)

T�5/2M23 =) �m�
43

Z 1

0
rBc(r)dr. (A.27)

We substitute the values of m�
ij from the OLS normal equations in (A.25)-(A.27), then, some

tedious algebra and the continuous mapping theorem yields the result in second part of Theo-

rem 2.1 directly from (A.21) and (A.25)-(A.27).

From the OLS normal equations, the expression for (✓̃ � ✓) can be written as

(✓̃ � ✓) =
T 6
⇣
(12� 12c̄+ 4c̄2)uTB+1 + (12� 12c̄+ 4c̄2)uTB

⌘
+Op(T 5)

T 6MT

=
T 6
⇣
(�12 + 12c̄� 4c̄2)(uTB+1 � uTB )

⌘
+Op(T 5)

T 6MT

=
T 6
⇣
(�12 + 12c̄� 4c̄2)vTB+1

⌘
+Op(T 5)

T 6MT
.

(A.28)

From this equation, it is simple to establish that

(✓̃ � ✓) =) vTB+1,

where we used (A.12) and continuous mapping theorem.

Proof of Theorem 2.2

Proof of theorem Theorem 2.2 follows the same steps as the proof of Theorem 2.1. First step

is to obtain (�̃ � �) =

✓PT
t=1 z̃tz̃0

t

◆�1✓PT
t=1 z̃tũt

◆
redefining the shift dummy in (A.8) by

Dt = {0|t  TB, t� TB|t > TB}.

Fact .3. Given the definition Dt = {0|t  TB, t � TB|t > TB} and noting that under GLS
transformation the first observation is not transformed, the elements of the moment matrixPT

t=1 z̃tz̃0
t are given by

TX

t=1

((1� ⇢̄L))2 = 1 +
(T � 1 ) c̄2

T 2
,

TX

t=1

(1� ⇢̄L)(1� ⇢̄L)t = 1�
c̄
��
1� 1

2 c̄
�
T � 1 + 1

2 c̄
�

T
,

TX

t=TB+1

(1� ⇢̄L)(1� ⇢̄L)Dt =
1

2
c̄ (�� 1 ) ( c̄ �+ 2� c̄ ) +

1

2

c̄2 (�� 1 )

T
,

TX

t=1

((1� ⇢̄L)t)2 =

✓
1

3
c̄2 � c̄+ 1

◆
T + c̄� 1

2
c̄2 +

1

6

c̄2

T
,

TX

t=TB+1

(1� ⇢̄L)t(1� ⇢̄L)Dt =
1

6
(�� 1 )

�
c̄2 �2 + c2 �� 2 c̄2 � 6 + 6 c̄

�
T

+
1

2
c̄ (�2 + c̄ ) (�� 1 )� 1

6

c̄2 (�� 1 )

T
,
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TX

t=TB+1

((1� ⇢̄L)Dt)
2 = � 1

3
(�� 1 )

�
c̄2 �2 + 3 c̄�� 2 c̄2 �+ 3 + c̄2 � 3 c̄

�
T

� 1

2
c̄ (�� 1 ) ( c̄�+ 2� c̄ )� 1

6

c̄2 (�� 1 )

T
.

Fact .4. Noting that under GLS transformation the first observation is not transformed, we
directly calculate the elements of the vector

PT
t=1 z̃tũt, which are given by

TX

t=1

(1� ⇢̄L)(1� ⇢̄L)ut = u1 �
c̄
PT

t=2�ut�1

T
+

c̄2
PT

t=2 ut�1

T 2
,

TX

t=1

(1� ⇢̄L)t(1� ⇢̄L)ut = u1 +
TX

t=2

�ut�1

+
c̄ (
PT

t=2�ut�1 �
PT

t=2 t�ut�1 �
PT

t=2 ut�1 )

T

+
c̄2 (

PT
t=2 tut�1 �

PT
t=2 ut�1 )

T 2
,

TX

t=TB+1

(1� ⇢̄L)Dt(1� ⇢̄L)ut = uTB+1 �
⇣
1 +

c

T

⌘
uTB + ( 1 + c̄� )

TX

t=TB+2

�ut�1

+
�c̄
PT

t=TB+2 t�ut�1 � c̄ ( 1 + c̄� )
PT

t=TB+2 ut�1

T

+
c̄
PT

t=TB+2�ut�1

T
+

c̄2
PT

t=TB+2 tut�1 � c̄2
PT

t=TB+2 ut�1

T 2
.

Using the results from Fact .3 and Fact .4 we obtain an expression for each element of

(�̃ � �). These expressions can be written as

(µ̃� µ) =
T 6Hµ7 + T 5Hµ6 + T 4Hµ5 + T 3Hµ4 +Op(T 2)

T 6HT
, (A.29a)

(�̃ � �) =
T 6H�6 + T 5H�5 + T 4H�4 +Op(T 3)

T 7HT
, (A.29b)

(✓̃ � ✓) =
T 6H✓6 + T 5H✓5 + T 4H✓4 +Op(T 3)

T 7HT
, (A.29c)

where Hij are polynomials in c̄ and � involving various sums of ut, ut�1, �ut, etc, and HT is

given by

HT =
kX

j=1

mTjT
j�k, k = 6, 7.

The MT is a sixth degree polynomial in T involving various powers of �̄ and c̄ The full

expression for MT is very lengthy and omitted. The expression for HT can be written as

lim
T!1

HT = 2 c̄4 �5 + 2 c̄4 �4 + (�10 c̄4 � 24 c̄2 + 24 c̄3 )�3

+ ( 6 c̄4 + 24 c̄2 � 24 c̄3 )�2 + ( 24 c̄2 � 72 c̄+ 72 )�

= H.

(A.30)

46



Normalizing each equation in (A.29) we obtain

T 1/2(µ̃� µ) =
Hµ7 + T�1/2Hµ6 + T�3/2Hµ5 + T�5/2Hµ4 +Op(T�7/2)

HT
, (A.31a)

T 1/2(�̃ � �) =
T�1/2H�6 + T�3/2H�5 + T�3/2H�4 +Op(T�7/2)

HT
, (A.31b)

T 1/2(✓̃ � ✓) =
T�1/2H✓6 + T�3/2H✓5 + T�5/2H✓4 +Op(T�7/2)

HT
. (A.31c)

Further, using Hµ7 = Hu1 we obtain

T 1/2(µ̃� µ) =
T�1/2Hµ6 + T�3/2Hµ5 + T�5/2Hµ4 + T�11/2Op(T 2)

HT

+
(H �HT )u1
T�1/2HT

.

(A.31a0)

The OLS normal equations can be use to show that

T�1/2Hj6 = T�1/2
⇣
hj16

TX

t=2

�ut�1 + hj26

TX

t=TB+2

�ut�1 + hj36u1 + hj46(uTB+1 � uTB )
⌘
,

T�3/2Hj5 = T�3/2
⇣
hj15

TX

t=2

�ut�1 + hj25

TX

t=2

ut�1 + hj35

TX

t=2

t�ut�1 + hj45

TX

t=TB+2

t�ut�1

+ hj55

TX

t=TB+2

�ut�1 + hj65

TX

t=TB+2

ut�1 + hj75u1 + hj85uTB + hj95uTB+1

⌘
,

T�5/2Hj4 = T�5/2
⇣
hj14

TX

t=2

�ut�1 + hj24

TX

t=2

ut�1 + hj34

TX

t=2

t�ut�1 + hj44

TX

t=2

tut�1

+ hj54

TX

t=TB+2

tut�1 + hj64

TX

t=TB+2

t�ut�1 + hj74

TX

t=TB+2

�ut�1 + hj84

TX

t=TB+2

ut�1

+ hj94u1 + hj10,4uTB + hj11,4uTB+1

⌘
.

where j = µ, �, ✓.

Using the results from Lemma 1.1, Lemma 1.2, Remark .1, and Remark .2, Herrndorf’s

weak convergence result, and continuous mapping theorem we can establish that

Hj6 = �
�
hj16Bc(1) + hj26Bc(�)

�
, (A.32)

Hj5 = �

 
hj25

Z 1

0
Bc(r)dr + hj35

⇣
Bc(1)�

Z 1

0
Bc(r)dr

⌘

+ hj45

✓�
Bc(1)� �Bc(�)

�
�
⇣Z 1

0
Bc(r)dr �

Z �

0
Bc(r)dr

⌘◆

+ hj65

Z �

0
Bc(r)dr

!
,

(A.33)

Hj4 = �

 
hj54

Z 1

0
rBc(r)dr + hj64

✓Z 1

0
rBc(r)dr �

Z �

0
rBc(r)dr

◆!
. (A.34)

To complete the proof we obtain the values of hjik from the OLS bias terms, then, after some

tedious algebra result follows from applying continuous mapping theorem on (A.31).
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Proof of Lemma 2.1

Note that y
⌧µ
t and y⌧�t can be written as

y
⌧µ
t = ut � (µ̃� µ)� (�̃ � �)t� (✓̃ � ✓)Dt, Dt = {0|t  TB, 1|t > TB},

y⌧�t = ut � (µ̃� µ)� (�̃ � �)t� (✓̃ � ✓)Dt, Dt = {0|t  TB, t� TB|t > TB}.

Mapping y
⌧µ
t and y⌧�t into the fixed interval r 2 [0, 1], we obtain

T�1/2y
⌧µ
[Tr] = T�1/2u[Tr] � T�1/2(µ̃� µ)

�
✓
[Tr]

T

◆
T�1/2(�̃ � �)� �1(t > TB)T

�1/2(✓̃ � ✓),
(A.35)

T�1/2y⌧�[Tr] = T�1/2u[Tr] � T�1/2(µ̃� µ)�
✓
[Tr]

T

◆
T�1/2(�̃ � �)

�
✓
[(T � TB)r]

T

◆
1(t > TB)T

�1/2(✓̃ � ✓).

(A.36)

Remark .3. For the level shift model: T�1/2(µ̃� µ)
p�! 0, T�1/2(✓̃ � ✓)

p�! 0.

Remark .4. For the trend shift model: T�1/2(µ̃� µ)
p�! 0.

Then, the result in Lemma 2.1 follows from Remark .3, Remark .4, Lemma 1.1, Theorem 2.1,

Theorem 2.2, Herrndorf’s weak convergence result, and continuous mapping theorem.

Proof of Theorem 2.3

Proof of Theorem 2.3 requires consistent estimators of �2
v and �2. Let these estimators be

denoted by �̂2
v and �̂2.

As pointed out by Phillips (1987a),

T�1
TX

t=1

v̂2t
a.s.��! �2

v

by strong law of McLeish (1975). Thus, a consistent estimator of �2
v is readily available.

A consistent estimator of �2 can be found by replacing the condition (b) of Assumption 1.1

by the more stronger condition supt E |vt|2� < 1 for some � > 2. From Theorem 4.2 of Phillips

(1987a)

�̂2 = T�1
TX

t=1

v̂2t + 2T�1
X̀

j=1

TX

t=j+1

v̂tv̂t�j (A.37)

is a consistent estimator of �2 if ` = o(T 1/4). Although, this estimator is consistent it is not

constrained to be nonnegative. To obtain a nonnegative estimate one can replace (A.37) by

�̂2(!) = T�1
TX

t=1

v̂2t + 2T�1
X̀

j=1

!`(j)
TX

t=j+1

v̂tv̂t�j , (A.38)
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where a simple choice for !`(j) is !`(j) = 1� j/(`+ 1) suggested by Newey and West (1987).

Now, we can establish the asymptotic distribution of the test statistics �⇤1 and �⇤1. Note

that for the level shift model,

T (⇢̂� ⇢) =

✓
1

T 2

TX

t=1

y
⌧2µ
t�1

◆�1✓ 1

T

TX

t=1

y
⌧µ
t�1vt

◆
, (A.39)

t⇢ =

✓
�̂2
v

T 2

TX

t=1

y
⌧2µ
t�1

◆�1/2✓ 1

T

TX

t=1

y
⌧µ
t�1vt

◆
, (A.40)

and

T (⇢̂� ⇢) =

✓
1

T 2

TX

t=1

y
⌧2�
t�1

◆�1✓ 1

T

TX

t=1

y⌧�t�1vt

◆
, (A.41)

t⇢ =

✓
�̂2
v

T 2

TX

t=1

y
⌧2�
t�1

◆�1/2✓ 1

T

TX

t=1

y⌧�t�1vt

◆
(A.42)

for the trend shift model. It can readily be shown that

T�1
TX

t=1

y
⌧µ
t�1vt =)

Z 1

0
B

⌧µ
c (r)dB(r) +

(�2 � �2
v)

2
, (A.43)

T�2
TX

t=1

y
⌧2µ
t�1 =)

Z 1

0
B

⌧µ
c (r)2dr (A.44)

for the level shift model, and

T�1
TX

t=1

y⌧�t�1vt =)
Z 1

0
B⌧�

c (r)dB(r) +
(�2 � �2

v)

2
, (A.45)

T�2
TX

t=1

y
⌧2�
t�1 =)

Z 1

0
B⌧�

c (r)2dr (A.46)

for the trend shift model. Then, the proof follows from (A.39)-(A.46) and continuous mapping

theorem.

Proof of Theorem 3.1

To prove Theorem 3.1 we only need to show that the detrended process y
⌧µ
t under the innova-

tional outlier model has the same limit as the one obtained from the additive outlier model.

Note that the detrended process y
⌧µ
t for the innovational outlier model can be written as

y
⌧µ
t = ut � (µ̃� µ)� (�̃ � �)t� (↵̃�↵)0ct,

where ↵ = (↵0,↵1, . . . ,↵k)0 is a (k+1)-dimensional parameter vector and ct = (Dt, . . . , Dt�k)0

is a vector containing k + 1 level shift dummies Dt�i = {0|t  (TB + i), 1|t > (TB + i)},
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i = 0, 1, . . . , k. Mapping y
⌧µ
t into the fixed interval r 2 [0, 1], we obtain

T�1/2y
⌧µ
[Tr] = T�1/2u[Tr] � T�1/2(µ̃� µ)

�
✓
[Tr]

T

◆
T�1/2(�̃ � �)� �1(t > TB)T

�1/2(↵̃�↵).
(A.47)

Since T�1/2(↵̃� ↵)
p�! 0 the expression in (A.47) converges to B

⌧µ
c (r) where B

⌧µ
c (r) is defined

in (2.26), thus, the asymptotic distributions of the test statistics �⇤1 and �⇤2 are given by (2.36)

and (2.37) which directly follows from the Lemma 2.1 and the Theorem 2.3.

Proof of Theorem 3.2

As in the case of the level shift model, showing that the detrended process y⌧�t under the

innovational outlier model has the same limit as the one obtained from the additive outlier

model is su�cient to prove the Theorem 3.2. Let dt be as defined in (3.41) with ct defined

by ct = (D�
t , D

µ
t , D

µ
t�1, . . . , D

µ
t�k+1)

0. Now partition ct and ↵ in the following manner: ct =

(D1,t,D
0
2,t)

0 and ↵ = (↵�,↵0
µ)

0 where D1,t = D�
t , D

0
2,t = (Dµ

t , D
µ
t�1, . . . , D

µ
t�k+1)

0, ↵� = ↵0, and

↵0
µ = (↵1,↵2, . . . ,↵k)0. Now, the detrended process y⌧�t for the innovational outlier model can

be written as

y⌧�t = ut � (µ̃� µ)� (�̃ � �)t� (↵̃� � ↵�)D1,t � (↵̃µ �↵µ)
0D2,t.

Now, by mapping y⌧�t into the fixed interval r 2 [0, 1], we obtain

T�1/2y⌧�[Tr] = T�1/2u[Tr] � T�1/2(µ̃� µ)�
✓
[Tr]

T

◆
T�1/2(�̃ � �)

�
✓
[(T � TB)r]

T

◆
1(t > TB)T

�1/2(↵̃� � ↵�)

� �1(t > TB)T
�1/2(↵̃µ �↵µ).

(A.48)

The expression in (A.48) converges to B⌧�
c (r) where B⌧�

c (r) is defined in (2.27), since T�1/2(↵̃µ�

↵µ)
p�! 0. Therefore, it directly follows from the Lemma 2.1 and the Theorem 2.3 that the

asymptotic distributions of the test statistics �⇤1 and �⇤2 are given by (2.38) and (2.39).

Proof of Theorem 3.3

The proof of the Theorem 3.4 is the same as the proof of the Theorem 3.1 redefining ct by

ct = (DTB1
, . . . , DTBq

)0 where DTBk
= {0|t  TBk , 1|t > TBk} for k = 1, 2, . . . , q.

Proof of Theorem 3.4

The proof of the Theorem 3.4 is the same as the proof of the Theorem 3.2 redefining ct by

ct = (DTB1
, . . . , DTBq

)0 where DTBk
= {0|t  TBk , t� TBk |t > TBk} for k = 1, 2, . . . , q.
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Proof of Theorem 3.5

Since the finite dimensional the asymptotic distributions of the test statistics are already es-

tablished by Theorem 2.3, we only need to show that

inf
�2⇤

�⇤1(�) =) inf
�2⇤

 
c+
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for the level shift model, and
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for the trend shift model. To prove this result we appeal to Theorem 1 of Zivot and Andrews

(1992). The details of the proof can be found in Appendix A of Zivot and Andrews (1992).
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