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1. Introduction 

This paper considers the out-of-sample forecasting performance of linear and non-linear 

models of real house price indexes for the US and its four Census regions – Northeast, South, 

Midwest, and West. The analysis compares autoregressive (AR) and smooth-transition 

autoregressive (STAR) models, estimates the models using monthly data over the 1968:1 to 

2000:12 in-sample period, and forecasts over the 2001:1 to 2010:5 out-of-sample period. 

Finally, we also design an ex-ante dynamic 25-step forecasting experiment over the period 

2010:6-2012:6 to examine the real world success of the forecasts generated from the linear 

AR and non-linear STAR models. 

Forecasters typically use linear models, albeit the variables forecast probably undergo 

some transformation (e.g., natural logarithms). A limited number of studies consider non-

linear models for forecasting purposes. For example, Rapach and Wohar (2006) employ non-

linear methods to perform out-of-sample forecasting of real exchange rates. In that paper, 

transactions costs provide a band of inactivity around the current real exchange rate that 

prevents arbitrage from moving the real exchange rate back to equilibrium. Outside the band 

of inactivity, arbitrage occurs tending to drive the real exchange rate back toward its 

equilibrium value. 

Housing prices in the US rise more quickly and fully to market events that increase 

the equilibrium price than they do to market events that lower the equilibrium price. The fall 

of housing prices during the Great Recession and beyond did not fall quickly enough to clear 

housing markets around the country, significantly slowing the recovery process. Also, Kim 

and Bhattachya (2009) show that housing prices in the US and three of the four Census 

regions exhibit non-linearity. The Midwest, the exception, exhibits linear movements. They 
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conclude that the behavior of the housing market differs across phases of expansion and 

contraction of the residential real estate sector. Seslen (2004) argues that households exhibit 

forward looking behavior and a higher probability of trading up, during expansions, since 

equity constraints prove less binding. During the downswing of the housing market cycle, 

households less likely trade, implying downward rigidity of house prices. Loss aversion 

during the downswing more likely reduces the mobility of households as well as trading 

activity. Further, Muellbauer and Murphy (1997) note that the presence of lumpy transaction 

costs in the housing market can also cause non-linearity. Given these issues, it makes sense 

to test for non-linear housing price movements.  

The housing market traditionally leads business cycle movements. The typical end of 

an expansion sees the central bank raising interest rates to subdue inflation. Higher interest 

rates cause a hiccup in the housing market and it turns down prior to the overall decline in 

economic activity. Also, housing markets generally follow different patterns in different 

regions, contributing to the regional differences in business cycle movements. 

Recently, Leamer (2007) strongly argues that housing is the business cycle, indicating 

“any attempt to control the business cycle needs to focus especially on residential 

investment.” (p. 150). His conclusion comes out of the dynamics of the home construction 

industry. That is, a building boom over one time interval pushes the stock of new homes 

above trend and that necessitates with some lag another time interval with a building slump. 

Thus, monetary policy should focus on preventing booms from occurring to head off 

eventual slumps. Quoting Leamer (2007), “The Fed can stimulate now, or later, but not 

both.” (p. 151, bold, italics in original). Smets (2007) comments on Leamer’s paper and 

argues that interest rates (and monetary policy) crucially determine the linkages between the 
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housing cycle and the business cycle. In the general discussion of his paper, Leamer (2007) 

responds to Smets (2007) that “in the context of my paper, ... the interest rate spread has its 

impact through housing, though it surely operates through other channels.” (p. 249).  

Residential housing enters directly into the calculation of GDP through investment 

demand. Other researchers consider the effect of housing demand on consumption demand, 

the largest component of GDP. Case, et al. (2005) provide a good recent review. While the 

original simple life-cycle model of consumption does not distinguish between different types 

of wealth, implicitly assuming that the marginal propensities to consume out of wealth 

remains the same across different wealth types, reasons exist to suggest that this implicit 

assumption is, in fact, invalid. Case, et al. (2005) offer five different possible rationalizations 

for different marginal propensities to consume out of different types of wealth – differing 

perceptions about the effects of permanent and transitory components, differing bequest 

motives, differing motives for wealth accumulation, differing abilities to measure wealth 

accumulation, and differing psychological “framing” effects. Another possible 

rationalization, not mentioned by Case, et al. (2005), involves whether the wealth holder 

receives consumption services from the holding of wealth. For example, owner occupied 

housing and consumer durable goods provide consumption services to holders of these 

components of wealth. Thus, households may adjust their consumption of nondurables and 

services, the usual measure of consumption for wealth-effect studies, differently to changes 

in the market values of owner occupied housing and consumer durables than to changes in 

other forms of wealth that do not possess such services.. 

The empirical evidence for the effect of changes in real estate and housing values on 

consumption also provides somewhat mixed findings, with the bulk of the results supporting 
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a significant positive effect. For time-series evidence, Elliot (1980) does not find any 

significant effect. Peek (1983), Bhatia (1987), Case (1992), and Case, et al. (2005) do.1 The 

cross-section evidence provides similar findings. Levin (1998) finds no evidence of a real 

estate and housing value effect on consumption. Skinner (1989) and Engelhardt (1996) 

discover significant effects. In addition, Engelhardt’s findings exhibit asymmetry, where 

negative “news” affects consumption but positive “news” does not. 

A large number of papers (e.g., Green 1997, Iacoviello 2005, Case et al. 2005, 

Rapach and Strauss 2006, Leamer 2007, Pariès and Notarpietro 2008, Vargas-Silva 2008, 

Bao et al. 2009, Christensen et al. 2009, Ghent 2009, Ghent and Owyang 2009, Pavlidis et 

al. 2009, and Iacoviello and Neri 2010) show a strong link between the housing market and 

economic activity. Since housing contributes to a large percentage of private sector wealth 

(Cook and Speight 2007), house price changes affect household consumption and saving 

patterns (Englund and Ioannides 1997). Campbell and Cocco (2005) argue that since 

households view housing expenditure as a consumption good, house prices correlate 

positively with consumption spending (see also Pavlidis et al. 2009). In addition, Forni et al. 

(2003), Stock and Watson (2003), and Gupta and Das (2010) argue that house-price 

movements lead economics activity, indicating the future direction of economic movements. 

Moreover, the recent boom-bust cycles in house prices cause much concern and interest 

amongst policy makers (Borio et al. 1994, and Bernanke and Gertler 1995, 1999), since the 

bust of house price bubbles typically leads to significant contractions in real economic 

activity, as seen in the current economic downturn.  
                                                 
1 Case, et al. (2005) consider the wealth effects of stock-market and real estate and housing values 
simultaneously for the U.S. states and 14 developed countries, including the U.S. They find strong evidence of a 
wealth effect on consumption due to real estate and housing value and a weaker effect due to stock-market 
value. Stock-market value achieves a stronger effect for the U.S. states, which may reflect the larger relative 
holding of stocks in the U.S. relative to other developed countries. 
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Models that forecast house price movements can provide policy makers with early 

information on future movements in economic activity, leading to better policy control. 

Hence, deducing the underlying nature of the data-generating process for house price (i.e., 

linear or non-linear) will improve the forecast performance. For example, if house price 

movements reflect non-linear adjustment, then forecasts from a linear model will generate 

inaccurate forecasts for not only house prices, but also the economy, given that house prices 

lead real economic activity.  

Recent studies (Genesove and Mayer 2001, Engelhardt 2001, Seslen 2004, Kim and 

Bhattacharya 2009, Balcilar et al. 2011) document evidence of nonlinearity in housing 

prices. Several reasons exist that support further research on such nonlinearities and 

specifications of nonlinear models that successfully capture the nonlinearities. Growing 

evidence exists on the nonlinearity of macroeconomic variables. Neftci (1984), Falk (1986), 

and Bradley and Jansen (1997) present evidence that many macroeconomic variables behave 

asymmetrically over the business cycle and, therefore, show nonlinear dynamics. Skalin and 

Teräsvirta (1999, 2002) conclude that macroeconomic variables such as unemployment and 

GDP conform to the non-linear framework of a smooth-transition autoregressive (STAR) 

model. Given that the housing market leads the business cycle and that significant links exist 

between the housing market and economic activity, nonlinearities in housing prices can 

indeed explain the existence of nonlinearities in macroeconomic variables. On the contrary, 

housing prices may exhibit nonlinearities, particularly of threshold variety captured by STAR 

models, because determinants of house prices such as the interest rate and GDP display 

asymmetric adjustment (Neftci 1984, Enders and Siklos 2001). Two possible explanations 

for intrinsic nonlinearity in house prices exist. First, households respond asymmetrically over 



7 
 

the business cycle. Abelson et al. (2005) argue that households more likely buy when prices 

rise, because they expect further rises and try to avoid higher payments. Households will less 

likely buy or sell, however, due to loss eversion with falling house prices. Seslen (2004) and 

Muellbauer and Murphy (1997) argue for non-linear adjustment in housing prices due to 

equity constraints and transactions costs, respectively. 

In sum, the housing market and its movement prove important for explaining business 

cycle movements through their effect on investment and consumption spending. In addition, 

some differences in regional business cycle movements depend on the local nature of the 

housing market.  

To examine the extent of the nonlinearity in housing price adjustments, we conduct 

an extensive out-of-sample forecast comparison of nonlinear and linear AR models for four 

regional (Northeast, Midwest, South, West) housing price indexes as well as for the 

aggregate US housing price index. If the out-of-sample forecasts generated by the nonlinear 

AR models outperform the forecasts generated by the linear AR models, then evidence exists 

against the linear models.  

The out-of-sample forecast comparisons do not rely on a single criterion, as usually 

done, such as the root mean square error (RMSE). We compare linear AR and a class of 

nonlinear AR models in their out-of-sample point, interval, and density forecasts. First, we 

compare linear and nonlinear AR models in their out-of-sample point forecast performance 

using the root mean squared error (RMSE) criterion and test for the superiority of the 

forecasts using the Diebold and Marino (1995) test. Moreover, nonlinear models may exhibit 

only superior forecasting performance in certain regimes (e.g., recessions) and not in others 

(e.g., expansions). To examine this possibility, we focus on the forecasting performance for 
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the observations in the tails of the distribution, using weighted version of the Diebold and 

Mariano test proposed by van Dijk and Franses (2003).  

Second, we also compare the superiority of the forecasts in their out-of-sample 

interval and density forecasting performance, using the approach suggested by Christoffersen 

(1998) and Debold et al. (1998). We compare interval forecasts using the Pearson  χ2 

statistics, while we compare the density forecast using the Kolmogorov-Smirnow, Doornik-

Hansen (1994), and Ljung-Box tests. To consider the extent of the nonlinearity, we also 

evaluate the nonlinear AR models using the informal testing approach proposed by Pagan 

(2002) and Breunig et al. (2003). We more formerly compare linear and nonlinear AR 

models using the Corradi and Swanson (2003) ZT statistic that is based on the distributional 

analogue of the mean square error metric of models. This statistic can compare two models, 

both of which are possibly misspecified. Finally, we use an ex-ante forecast design and 

compare 25-step dynamic forecasts of the linear and nonlinear AR models over 2010:6 to 

2012:6. 

The rest of the paper adopts the following structure. Section 2 outlines the 

methodology of non-linear estimation. Section 3 provides a description of point, interval, and 

density forecasts. Section 4 discusses the data. Section 5 evaluates the empirical findings. 

Section 6 concludes. 

2. Methodology 

We adopt the STAR framework, developed by Luukonnen et al. (1988) as extended by 

Escribano and Jordá (1999), to model house price growth rates as non-linear and state-
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dependent.2 The STAR framework connects different regimes with a smooth transition 

function to describe the long-run dynamics of house price growth rates. The STAR 

framework dominates threshold autoregressive (TAR) (Tsay 1989) and the Markov switching 

(MS) (Hamilton 1989) models, since the latter two frameworks specify discrete jumps 

between regimes. In fact, the TAR model emerges as a limiting case of the STAR model. In 

addition, the low speeds of transition, which we find in the estimation of the non-linear 

model, support our choice. In housing markets with large number of buyers and sellers with 

heterogeneous beliefs and unsynchronized responses to news, the STAR framework seems 

appropriate. 

The STAR model of order p, for variable rt, is specified as follows:3 

0 0
1 1

0 0

[ ] [ ]. ( )

                                  [ ( ) ] [ ( ) ]. ( )

p p

t i t i i t i t d t
i i

t t t d t

r r r F r u

L r L r F r u

φ φ ρ ρ

φ φ ρ ρ

− − −
= =

−

= + + + +

= + + + +

∑ ∑  (1)  

where rt denotes the housing price growth rate, and F(rt-d) denotes the smooth and continuous 

transition function of past realized housing price growth rates controlling the regime shift 

mechanism. Thus, house price growth rates evolve with a smooth transition between regimes 

that depends on the sign and magnitude of past realization of house price growth rates. We 

generate non-linearities by conditioning the autoregressive coefficients, ρ(L), to change 

smoothly with past house price growth rates. That is, the past realized home price growth rate 

                                                 
2 Non-linear estimation, just like linear estimation, requires stationary variables to avoid spurious estimates. 
Hence, we convert house prices in the US and the four Census regions into annual growth rates. We confirm 
stationarity of the series, in turn, by the Augmented–Dickey–Fuller (ADF), the Dickey-Fuller with GLS 
Detrending (DF-GLS), the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS), and the Phillips-Perron (PP) tests. 
The results are available from the authors.   
3 This discussion relies heavily on the presentation in Kim and Bhattacharya (2009) and Balcilar et al. (2011). 
We retain their symbolic representation of the equations. 
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rt-d becomes the transition variable with delay parameter d, which indicates the number of 

periods that rt-d leads the regime switch. 

Teräsvirta and Anderson (1992) consider two alternative transition functions that 

produce the logistic smooth transition autoregressive (LSTAR) model and the exponential 

smooth transition autoregressive (ESTAR) model. In the LSTAR model, the transition 

function equals a logistic model as follows:  

1( ) [1 exp{ ( }] , 0t d t dF r r cγ γ−
− −= + − − > ,     (2) 

while in the ESTAR model, the transition function equals an exponential model as follow: 

2( ) 1 exp{ ( ) }, 0t d t dF r r cγ γ− −= − − − > .     (3) 

In equations (2) and (3), γ denotes the speed of transition between regimes and c 

measures the halfway point or threshold between the two regimes. Equations (1) and (2) 

yield the LSTAR(p) model and equations (1) and (3) yield the ESTAR(p) model. In STAR 

models, two different economic phases characterize expansions and contractions, but a 

smooth transition occurs between the two regimes, controlled by rt-d (Sarantis 2001). The 

LSTAR and ESTAR models describe different dynamic behaviors. The LSTAR model 

allows the expansion and contraction regimes to exhibit different dynamics whereas the 

ESTAR model suggests that the two regimes exhibit similar dynamics (Sarantis 2001). When 

γ→∞, the model degenerates into the conventional TAR(p), while when γ→0, the model 

degenerates to the linear AR(p) model (Teräsvirta and Anderson 1992). 

The construction of an appropriate STAR model for a specific variable encompasses 

three stages. First, we specify a linear AR(p) model with p chosen by the unanimity of at least 

two of the popular lag-length tests – the LR test statistic, Akaike information criterion (AIC), 

Schwarz information criterion (SIC), the final prediction error (FPE) criterion, and the 
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Hannan-Quinn (HQ) information criterion. Second, we test for linearity against a non-linear 

STAR model, for different values of the delay parameter d using the linear AR(p) model as 

the null, based on a Lagrange multiplier smooth transition (LM-STR) test for linearity. This 

requires estimating the following auxiliary regression proposed by Teräsvirta and Anderson 

(1992): 

2
0 1, 2, 3,

1 1 1

1,
1

. . .

                                             .

p p p

t i t i i t i t d i t i t d
i i i

p
k

k i t i t d t
i

r r r r r r

r r u

φ ϕ ϕ ϕ

ϕ

− − − − −
= = =

+ − −
=

= + + + +

+ +
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∑

"

,  (4) 

where the null hypothesis of linearity states that H01: 2 2 1... 0i i k iφ φ φ += = = =  for all i. We 

estimate equation (4) over a range of values, 1 ≤ d ≤ D to identify the appropriate delay 

parameter d. When we reject linearity for more than one value of d, we choose such that d = 

arg min p(d) for 1 ≤ d ≤ D, where p(d) equals the test’s p-value.  

Escribano and Jordá (1999) argue that a first-order Taylor approximation does not 

sufficiently capture the characteristics of the exponential function and recommend second-

order Taylor approximation. Escribano and Jordá propose four Lagrange multiplier (LM) 

tests of linearity against STAR alternatives. The LM2 and LM4 tests exhibit power against 

ESTAR alternatives while the LM1 and LM3 tests exhibit power against LSTAR alternatives. 

According to Teräsvirta and Anderson (1992), we choose between the LSTAR and 

ESTAR models, once we reject linearity, by applying the following sequence of nested tests: 

04 4: 0,iH φ =    i = 1, ... , p;    (5) 

03 3 4: 0 0,i iH φ φ= =   i = 1, ... , p; and   (6) 

02 2 3 4: 0 0,i i iH φ φ φ= = =  i = 1, ... , p.    (7) 
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Three possible sequential outcomes exist, given d. One, we reject 04 4: 0iH φ = , which implies 

that we select the LSTAR model. Two, if we do not reject H04, then we test if 

03 3 4: 0 0i iH φ φ= = . Rejecting H03 implies the selection of the ESTAR model. Three, if we do 

not reject H03, then we test 02 2 3 4: 0 0i i iH φ φ φ= = = . Rejecting H02 implies selection of the 

LSTAR model. 

Escribano and Jordá (1999) propose alternative tests for the selection of LSTAR 

versus ESTAR models as follows: 

0 3 5: 0, 0,E i iH φ φ= =   i = 1, ... , p; and   (8) 

0 2 4: 0, 0,L i iH φ φ= =   i = 1, ... , p.    (9) 

The tests H0E and H0L come from equation (4) with k =4. Rejecting H0E selects the ESTAR 

model while rejecting H0L selects the LSTAR model. 

Various authors (Granger and Teräsvirta 1993, Teräsvirta 1994, Eitrheim and 

Teräsvirta 1996, and Sarantis 2001) argue that if researchers strictly apply this sequence of 

tests, then they may reach false conclusions, since the tests ignore higher-order terms of the 

Taylor expansion used in its derivation. These authors recommend that researchers compute 

p-values for all the F-tests of the hypotheses in equations (1) through (3). Then, researchers 

choose the appropriate STAR model based on the lowest p-value or highest F-statistic. 

3. Point, Interval, and Density Forecasts: Method and Analysis4 

Our analysis expands beyond the traditional point forecasts to include both interval and 

density forecasts. Recent studies report that non-linear models produce superior interval and 

density forecasts to linear models, although inferior point forecasts (e.g., Clements and Smith 

                                                 
4 This section relies heavily on Rapach and Wohar (2006). 



13 
 

2000, Siliverstovs and van Dijk 2003, and Rapach and Wohar 2006). We develop interval 

and density forecasts using Christoffersen (1998) and Diebold, et al. (1998).  

Point, Interval, and Density Forecasts: Method 

We use the fitted non-linear AR models reported in Section 2 to calculate out-of-sample 

point, interval, and density forecasts. We consider whether out-of-sample point, interval, and 

density forecasts generated by the non-linear models outperform those generated by simple 

linear AR models. We assume that the non-linear and linear AR models exhibit Gaussian 

errors. 

Generating point, interval, and density forecasts for linear AR models with Gaussian 

errors proves straightforward.5 Analytical point, interval, and density forecasts do not 

generally exist for non-linear AR models with Gaussian errors. We follow Rapach and 

Wohar (2006) and use their simulation-based procedure to generate forecasts for the non-

linear AR models.  

Analyzing Point Forecasts 

We use the mean-square-forecast-error (MSFE) criterion and adopt the Diebold and Mariano 

(1995) procedure to test the null hypothesis of equal predictive ability against the one-sided 

alternative hypothesis that the non-linear AR model exhibits a smaller MSFE than the linear 

AR model. Following Siliverstovs and van Dijk (2003) and Rapach and Wohar (2006), we 

use the modified Diebold and Mariano statistic (M-DM) of Harvey, et al. (1997), correcting 

for potential finite-sample size distortions. We use the Student-t distribution to determine 

                                                 
5 We follow the existing literature in treating the parameters of the linear and nonlinear AR models as known in 
forming forecasts. Hansen (2006) describes how to include parameter estimation uncertainty into interval 
forecasts for linear models. 
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significance.6 We also follow Rapach and Wohar (2006) and consider a weighted Diebold 

and Mariano (1995) statistic (W-DM) recently developed by van Dijk and Franses (2003), 

where the observations of different regions receive different weights. Given that our non-

linear models include asymmetric adjustment to long-run equilibrium, we adopt the first 

weight function suggested by van Dijk and Franses (2003), which attaches greater weight to 

observations in both tails of the distribution. We again follow Siliverstovs and van Dijk 

(2003) and Rapach and Wohar (2006) and adjust the weighted statistic using the Harvey et 

al. (1997) correction factor to obtain the modified W-DM statistic (MW-DM). We again use 

the Student-t distribution to determine significance. 

Analyzing Interval Forecasts 

We follow Wallis (2003) and Rapach and Wohar (2006) in analyzing interval forecasts and 

use the likelihood ratio (LR) tests developed by Christoffersen (1998), who argues that good 

interval forecasts include good coverage and independently distributed observations over 

time falling inside or outside of the forecast intervals to prevent clustering. Christoffersen 

(1998) develops likelihood ratio tests of unconditional coverage, independence, and 

conditional coverage. We use the Pearson χ2 versions of these tests, as Wallis (2003) 

advocates. These statistics include indicator variables that equal one if the actual observation 

appears in the interval forecast; zero otherwise. We analyze these statistics with contingency 

tables or matrices, where we compare the observed number of outcomes to the expected 

number under the appropriate null hypothesis. We follow Wallis (2003) and calculate exact 

p-values based on the observed and expected outcomes using Mehta and Patel (1998). This 

allows sharper inference, especially for a small number of out-of-sample forecasts. We 

                                                 
6 We use the Newey and West (1987) procedure with the Bartlett kernel to compute the M-DM statistic. 
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modify the above procedure to accommodate autocorrelation in the optimal forecasts at 

horizon h, since the indicator variables used to construct the Pearson χ2 statistics will also 

exhibit autocorrelation for the optimal forecasts. We follow Siliverstovs and van Dijk (2003) 

and Rapach and Wohar (2006), who use the procedure based on Bonferroni bounds, as 

Diebold et al. (1998) suggest. This procedure divides the indicator variable series into h 

independent sub-groups under the null hypothesis. We then apply the χ2 tests to each of the h 

subgroups and reject the relevant null hypothesis for a given test at an overall significance 

level of α, if we reject the null hypothesis for any of the sub-groups at the α/h significance 

level. Proceeding in this way can severely restrict the number of indicator variables in each 

sub-group as h increases, so that we place practical limits on the maximum h we can 

consider. The declining number of indicator variables available in each sub-group as h 

increases also helps to motivate our use of exact p-values for inference.  

Analyzing Density Forecasts 

Diebold et al. (1998) develop a method for analyzing density forecasts, using the probability 

integral transform (PIT). Under the null hypothesis that the density forecast generated by a 

given forecasting model is true, Diebold et al. (1998) demonstrate that the PIT series is 

distributed i.i.d. U(0, 1). Following Clements and Smith (2000), Siliverstovs and van Dijk 

(2003), and Rapach and Wohar (2006), we use the Kolmogorov–Smirnov statistic (KS) to 

test for uniformity. Berkowitz (2001) suggests transforming the PIT series using the inverse 

of the standard normal cumulative density function. Then, under the null hypothesis that the 

density forecast is true, the transformed PIT series is distributed iid N(0, 1). Following 

Clements and Smith (2000), Siliverstovs and van Dijk (2003), and Rapach and Wohar 

(2006), we test for standard normality using the Doornik and Hansen (1994) statistic (DH). 
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The KS and DH statistics assume independence. To test explicitly for independence in the 

PITs, Diebold et al. (1998) recommend looking for autocorrelation in the power-transformed 

PIT series. Following Siliverstovs and van Dijk (2003) and Rapach and Wohar (2006), we 

use the Ljung–Box (LB) statistic to test for first-order autocorrelation in the power 

transformed PIT series. Finally, when h > 2, we proceed as described above in analyzing 

interval forecasts and divide the PITs into h independent sub-groups under the null 

hypothesis. We then apply the KS, DH, and LB tests to each of the h subgroups and reject the 

null hypothesis at an overall significance level of α, if we reject the null hypothesis for any 

sub-group at the α/h significance level.  

4. Data  

The National Association of Realtors (NAR) calculates median and mean (average) prices for 

the nation and four census regions on a monthly basis. Due to the nature of the distribution of 

home sales prices, the mean sales price usually exceeds the median price. Although slight 

seasonal patterns exist in the sales price data, the NAR does not seasonally adjust the data, 

because the seasonal patterns prove difficult to model. Since home price data is 

nonstationary, we compute annual natural logarithmic differences in the house price indexes 

to approximate growth rates to induce stationarity. That is, 12 12ln ln lnt t t tPr P P−= ∆ = − , 

where Pt is the median home price. We seasonally adjust the data in levels using the Census 

X-12 method. Figure 1 plots the seasonally adjusted level of the median home sale prices and 

Figure 2 plots the annual growth rates rt for the four Census Regions and the US. The 

analysis uses monthly data over the 1968:1 to 2000:12 in-sample period, and forecasts over 



17 
 

the 2001:1 to 2010:5 out-of-sample period. We also compare ex-ante forecasts from 2010:6 

to 2012:6.7  

5. Empirical Findings 

This section first considers the LM-STR test for linearity of housing price growth rates and 

then conducts hypothesis tests to select between the LSTAR and ESTAR models. Once we 

select the appropriate STAR model, we then estimate the specific STAR model and the linear 

AR model and compare the in-sample performance over 1968:1 to 2000:12. When 

conducting the (LM-STR) test for linearity, as discussed above, we choose the optimal lag, p, 

based on the unanimity of at least two of popular lag-length selection tests. We allow the 

delay lag, d, to vary between 1 ≤ d ≤ 8. We estimate the optimal delay lag d based on the 

lowest p-value or highest F-statistic associated with the null hypothesis: 01H ′′  

2 3 4 0i i iφ φ φ= = =  for all i. 

Table 1 indicates delay lags of 3, 8, 1, 1, and 5 for the US, the Northeast, the 

Midwest, the South, and the West, respectively. Moreover, we reject the null hypothesis of 

linearity for the US, the Northeast, and the South at the 1-, 5-, and 1-percent levels, 

respectively. We can only reject the null hypothesis of linearity for the Midwest and the West 

at the 20-percent level by the LM3 test. Since Escribano and Jordá (1999) propose four LM 

tests of linearity, we also report the LM1, LM2, and LM4 test with the following null 

hypothesis: 01H  2 0iφ = , m
01H  2 3 0i iφ φ= = , and m

01H  2 3 4 5 0i i i iφ φ φ φ= = = =  for all i, 

                                                 
7 The four Census regions and the included states are described as follows: Northeast: Connecticut, Maine, 
Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; Midwest: 
Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, 
and Wisconsin; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, 
Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and 
West Virginia; and West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New 
Mexico, Oregon, Utah, Washington, and Wyoming. 
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respectively. In this case, we add the West to the Census regions where we can reject the null 

hypothesis of linearity at the 5-percent level using the LM4 test and Midwest using the LM1.8  

We now need to specify the appropriate STAR model to capture accurately the non-

linear dynamics. As proposed by Teräsvirta and Anderson (1992), we need to test for the 

sequence of nested hypothesis tests H04, H03, and H02 for the choice between LSTAR and 

ESTAR alternatives. Then we implement the H0E and H0L tests proposed by Escribano and 

Jordá (1999). Table 2 reports the findings. The Teräsvirta and Anderson (1992) method 

selects the LSTAR model for all the US and the four Census regions. Applying the Escribano 

and Jordá (1999) test, we also select the LSTAR model in each case, except for the 

Northeast, where we select the ESTAR model. Comparing the two methods, however, we see 

that the p-value for the Teräsvirta and Anderson (1992) method proves better than the p-

value for the Escribano and Jordá (1999) test. Thus, we choose to adopt the LSTAR model, 

which implies that house price growth rates exhibit asymmetric dynamics during the phases 

of contraction and expansion.9  

Next, we provide further evidence of nonlinearity by providing in-sample comparison 

based on the estimation of the linear AR model, given in equation (10), and the nonlinear 

LSTAR model described in equation. (11): 

0
1

[ ]
p

t i t i t
i

r r uφ φ −
=

= + +∑ , and      (10) 

1
0 0

1 1
[ ] [ ][1 exp{ ( )}]

( )

p p

t i t i i t i t d t
i i t

r r r r c u
r

γφ φ ρ ρ
σ

−
− − −

= =

= + + + + − − +∑ ∑ , (11) 

                                                 
8 In this case, however, the delay lag changes for the Midwest to 8. We can still only reject linearity for the 
Midwest at the 20-percent level. 
9 Although we can reject linearity with lowest p-value by the LM4 test for West, which has power against an 
ESTAR alternative, both Teräsvirta and Anderson (1992) and Escribano and Jordá (1999) methods select an 
ESTAR model. Given the consistency of both tests, we prefer to specify an ESTAR model for the West Census 
region. 
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Teräsvirta (1994) argues that the joint estimation of (γ, c, 0φ , ρ0, φi, and ρi) in the LSTAR 

model proves difficult, since difficulties arise in the estimation of c and γ. For large γ, we 

require a large number of observations in the neighbourhood of c to precisely estimate γ. That 

is, relatively large changes in γ produce only minor effects on shape of F(.). Thus, the 

estimate for γ may converge slowly. Note that if γ is statistically insignificant, then equation 

(11) becomes the linear AR model. Following Teräsvirta (1994), we standardize the exponent 

of the function F(.) of the LSTAR model by multiplying it by the term 
t

1
( r )σ , where t( r )σ  

is the standard deviation of the corresponding yearly housing price growth rate rt. 

Tables 3 and 4 report the results of estimating the LSTAR and AR models, 

respectively, where we estimate the LSTAR model using nonlinear least-squares (NLS).10 

We use a general-to-specific method to drop insignificant (worse than 10-opercent level) 

coefficients, but imposing the condition that the adjusted R-squared does not fall. Thus, some 

insignificant coefficients at the 10-percent level remain in the final models. The logistic 

function conditions the autoregressive parameters to change smoothly with lagged realized 

changes in the growth rates of home prices in the LSTAR model, which generates the 

endogenous nonlinearity. When we compare the estimation results over the period of 1968:1 

to 2000:12 of the AR and the LSTAR models, the following features confirm the dominance 

of the non-linear estimation: (a) The standard errors and the log likelihood values of the 

nonlinear regression show improvements over those corresponding from the linear 

regression; (b) The adjusted R2 values in the nonlinear regression exceed the corresponding 

                                                 
10 Following the suggestions of van Dijk et al. (2002), we examine a battery of misspecifications tests -- no 
residual autocorrelation parameter constancy, no remaining non-linearity, no autoregressive conditional 
heteroskedasticity (ARCH), besides the test of normality -- for the LSTAR model. The estimated LSTAR 
models for the US and its four Census regions do not exhibit any type of misspecification. These results are 
available on request. 
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values under the linear regression, implying that a portion of variance in the housing price 

growth rates in the long-run associates with nonlinear dynamics; (c) Many estimates of the 

coefficients of the nonlinear portion of equation (11) (i.e., ρi’s), prove statistically significant; 

and (d) The speed of adjustment between regimes, γ, proves statistically positive at the 10-

percent level or better only for the US and the Northeast Census region. The statistical 

significance of γ confirms the presence of nonlinearity outlined by the LSTAR model. The 

estimate of γ, however, does not generally prove precise. Thus, its insignificance does not 

invalidate the nonlinearity, which we support by the formal tests in Table 2. 

These results together provide evidence that the LSTAR model appropriately captures 

the inherent non-linearity in the long horizon housing price growth rates in the US and the 

four Census regions housing markets. Thus, a linear model would introduce misspecification, 

since it does not allow the dynamics of home price growth rates to evolve smoothly between 

regimes depending on the sign and magnitude of past realization of home price growth 

rates.11  

Note that we estimate a relatively small γ for all the categories of housing price 

growth rates. Relatively small estimates of γ, given that the estimate varies from zero to 

infinity, suggest a slower transition from one regime to another, which, in turn, contrasts with 

the TAR or Markov-switching models that witness sudden switches between regimes. The 

                                                 
11 The Ramsey model specification test provides further evidence of nonlinearity in the housing price growth 
rates of the US and the four Census regions. We reject the null hypothesis for a linear AR model specification, 
against a nonlinear LSTAR model, at the 1-percent level of significance for all cases. Note the appropriate F-

statistic for the test is: 
2 2

2

( ) /
(1 ) /( )

nonlinear linear

nonlinear

R R m
R n k

−
− −

, where 2
nonlinearR ( 2

linearR ) is the 2R of the LSTAR (AR) model, m 

denotes the number of restrictions in the linear AR model, and k measures the number of parameters in the 
LSTAR model. The values of the F-statistic for the US and the four Census regions (Northeast, Midwest, South, 
and West) equal, respectively, 4.19, 7.30,3.51, 3.47, and 2.77.. 
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parameter c, which equals the half-way point between regimes,12 is positive for the US and 

all four Census regions, although insignificantly so for the South, indicating that similar 

values of the housing price growth rate shock trigger a shift in regimes.  

5. Forecast Accuracy 

Given that we estimate the house price growth rates in the US and its four Census regions 

using the LSTAR model, this section compares the point, interval, and density forecast 

performances of the non-linear model with those of the classical linear AR models.  

Point Forecasts  

Table 5 reports the out-of-sample point forecast evaluation results for the LSTAR and linear 

AR models for the US and the four Census regions. Columns 2 and 6 report the root mean 

squared forecast error (RMSFE) for the linear AR model, and columns 3 and 7 report the 

ratio of the RMSFEs of the LSTAR model to the linear AR model, the relative RMSFE. The 

relative RMSFE exceeds one for short horizons for the US and each Census region, 

indicating that the point forecasting performance of the linear AR dominates that of the 

LSTAR model at short horizons. At longer horizons, the LSTAR models’ performance 

improves, reaching a minimum between 18 and 36 months out. More specifically, the US 

reaches a minimum of the relative RMSFE at 30 months; the Northeast and the Midwest, at 

12 months; the South, at 18 months; and the West, at 30 and 36 months. Then the relative 

RMSFEs generally increase to the end of the forecast horizon at 48 months, except for the 

US, which reaches a peak at 30 months.  

                                                 
12 The parameter c denotes  the value for which G(st;  γ, c)=.5 at st = c. Therefore, the process switches 
monotonically towards Regime 1 as st increases. Thus, two regimes exhibit equal weights at the threshold value 
c and switching occurs exactly at c.  
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Columns 4 and 8 report the modified Diebold and Mariano (M-DM, 1995) test 

statistic for the null hypothesis that the linear AR model MSFE equals the LSTAR model 

MSFE against the alternative hypothesis that the linear AR model MSFE exceeds the LSTAR 

model MSFE. The numbers in brackets to the right of the M-DM statistic are p-values based 

on the Student’s t distribution at any horizon. Reasons exist for caution in the use of 

inferences based on the Student’s t distribution for the M-DM statistics in Table 5. When h = 

1, McCracken (2004) shows that the Diebold and Mariano (1995) statistic exhibits a non-

standard limiting distribution when comparing forecasts from two nested linear models. 

When h ≥ 2, Clark and McCracken (2004) also show that the Diebold and Mariano (1995) 

statistic exhibits a nonstandard limiting distribution that depends on nuisance parameters. 

Thus, we cannot calculate critical values, and they recommend using a bootstrap procedure to 

generate critical values. The bootstrapped p-values appear in braces under the M-DM 

statistics and reflect 2000 bootstrap simulations. 

Columns 5 and 9 report the modified weighted Diebold and Mariano (MW-DM, 

1995) test statistic for the null hypothesis that the linear AR model weighted MSFE equals 

the LSTAR model weighted MSFE against the alternative hypothesis that the linear AR 

model weighted MSFE exceeds than the LSTAR model weighted MSFE. The MW-DM 

statistics place greater weight on forecasting house price growth rates farther out in the tails 

of the unconditional distribution. Columns 5 and 9 also report p-values for the MW-DM 

statistics based on the Student’s t distribution in square brackets to the right of the MW-DM 

statistics and bootstrapped p-values in braces below the MW-DM statistics. 

The findings for the M-DM and MW-DM statistics parallel each other nicely. The 

LSTAR model provides significantly better point forecasts at the 10-percent level, generally 
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at longer horizons. The p-values based on the Student’s t provide more evidence of LSTAR 

superiority at more lag lengths than the bootstrapped p-values, where significantly better 

performance by the LSTAR models occurs at the 36, 42, and 48 month horizons. Overall, 

robust evidence exists in Table 5 that the LSTAR model offers forecasting gains at long 

horizons relative to simple linear AR models for the US and the four Census regions – the 

Northeast, Midwest, South and West. No robust evidence exists that the LSTAR models offer 

forecasting gains at short horizons for the US or the four Census regions. 

Interval Forecasts 

Table 6 enumerates the Pearson χ2 statistics used to evaluate interval forecasts for the 

LSTAR and linear AR models for h =1, 2, 3, and 4. Following Wallis (2003) and Rapach and 

Wohar (2006), we consider the inter-quartile interval forecasts (i.e., the 0.25 and 0.75 

quantiles). For both the LSTAR and linear AR models for the US, we reject correct 

unconditional coverage at all four reported horizons (see columns 4) and we only reject 

correct conditional coverage at all four horizons for the linear AR model but only for the 1-, 

2-, and 3-month horizons for the LSTAR model. In addition, we can reject independence 

only at the 1- and 3-month horizons for the linear AR model and at the 3-month horizon for 

the LSTAR model.  

The four Census tracts tell different stories. The best performance occurs for the 

Northeast. Here, we cannot reject independence at any horizon except for the 3-moth horizon 

for the LSTAR and linear AR models. Further, we reject correct unconditional coverage at 

the 1-, 2-, and 4- month horizons for the linear AR model and at the 1- and 2-month horizons 

for the LSTAR model. Finally, we can reject the correct conditional coverage at the 1- and 3-

month horizons for the linear AR and LSTAR models.  
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The worst performance occurs for the Midwest and the South. For the Midwest, we 

reject the correct unconditional and conditional coverage at all horizons for both the linear 

AR and LSTAR models. But, we cannot reject the independence at any horizon for the linear 

AR and LSTAR models, except for the LSTAR model at the 3-month horizon. The findings 

for the South match those for the Midwest, except that we cannot reject correct conditional 

coverage for the 4-month horizon for the LSTAR model and we cannot reject independence 

at any horizon. 

The West provides the most disparate set of findings from the rest. We can reject 

independence for the 1-. 3-, and 4-month horizons for the LSTAR model and only at the 1- 

and 3-month horizons for the linear AR model. We also cannot reject the correct 

unconditional coverage at any horizon for the AR and LSTAR models and the correct 

conditional coverage at the 4-month horizon for the linear AR model and at the 2-month 

horizon for the LSTAR model. 

In sum, we do not find strong evidence to support the LSTAR model specification 

over the linear AR specifications. In general, both models produce similar findings with 

regard to interval forecasts.  

Density Forecasts 

Table 7 lists the density forecast evaluation findings for the linear AR and LSTAR models 

for the US and the four Census regions across h =1, 2, 3, and 4. Several observations emerge. 

First, the results differ across the US and its Census regions. The Ljung-Box tests for no first-

order autocorrelation generally reject the null hypothesis of independent PITs for k =2 and 4 

across the four Census regions, whereas this test rejects independent PITs for k = 1, 2, 3, and 
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4 for the US (see columns 6, 7, 8 and 9). These rejections suggest deficiencies in the density 

forecasts for both the linear AR and LSTAR models.  

Second, the KS statistics in column 4 of Table 7 provide support for the LSTAR 

model over the linear AR model for the US, since the KS statistic proves significant at all 

reported horizons for the linear AR model but insignificant at all horizons for the LSTAR 

models. For four Census regions, the KS statistic is not significant for either model at any 

reported horizon.  

Third, the DH statistic proves significant at the 1-month horizon for the linear AR 

model for the US, whereas the DH statistic proves significant for the linear AR model for the 

Midwest and West Census regions at 4- and 2-month horizons, respectively. For the 

Northeast and the South, the DH statistics prove significant for both the linear AR and 

LSTAR models at varying horizons. 

In sum, Table 7 provides limited evidence that the LSTAR model dominates the 

linear AR model in density forecasting, but only for the US as a whole. Almost no evidence 

exists supporting this conclusion at the Census region level. That is, the linear AR and 

LSTAR models produce similar forecasting performance. 

6. Comparing In-Sample Conditional Densities and Ex-ante Forecasts 

The forecast comparisons in the previous section show that nonlinear AR models only 

generate slightly better forecasts for some series in terms of interval and density forecasts and 

only generate better point forecasts at forecast horizons greater than 36 months. Diebold and 

Nason (1990) list several explanations for failure of nonlinear models to generate better 

forecasts than their linear counterparts, even though they fit the data better and formal 

statistical tests strongly reject linearity. They note that slight conditional mean nonlinearities 
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may not produce differences until one uses a large number of observations. We examine why 

the LSTAR models do not produce notable superior forecasts, following the suggestion made 

by Pagan (2002) and Breunig et al. (2003), and evaluate the conditional expectations 

functions of fitted LSTAR and AR models for rt, given the regime switching variable rt-d. We 

will see how close the nonlinear and linear AR models are in terms of their conditional 

means, given rt-d. We can evaluate the conditional mean given any lagged value of rt. In our 

case, rt-d is a natural choice, since this delay best captures the nonlinearity. 

We can evaluate the conditional mean functions of the linear AR models straight 

from the fitted models. Pagan (2002) suggests for nonlinear models using a large number of 

simulations from the fitted model to evaluate the conditional mean function. (2002) suggests 

that a useful informal evaluation fits a nonlinear model, defines its forecasting performance, 

on the conditional mean function, given a conditioning variable. In our case, this translates 

into evaluating ( )t t dE r r −  against rt-d. Ordering the data according to the magnitude of the 

conditioning variable rt-d rather than time makes the comparison more sensible. To evaluate 

the conditional mean function of fitted LSTAR models, we generate 63,000 simulations from 

each model and discard first 3,000 to remove the burn-in effect. We draw the errors from the 

actual residuals of the fitted models rather than an assumed distribution.  

Figure 3 displays the conditional mean functions of linear (dashed line) and nonlinear 

(solid line) models given rt-d sorted according to the magnitude of rt-d. We superimpose a 

scatterplot of annual growth rate of house price rt against the switch variable rt-d of the 

estimated LSTAR model in the plots. We generate conditional expectation functions of the 

fitted LSTAR models by 60,000 bootstrap simulations of the fitted model and estimated 

using Nadaraya-Watson kernel regression. We choose the kernel regression bandwidth using 
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the least-squares cross validation and a second order Gaussian kernel. Figure 3 gives a good 

idea on why the LSTAR models do not generate superior forecasts. For the Midwest Census 

region, linear and nonlinear conditional mean functions are almost the same except for low 

values where a slight nonlinearity exists. This probably explains, indeed, the non-rejection of 

linearity in Kim and Bhattacharya (2009) for this series. Only some slight deviation exists 

from the linearity for the US series and significant deviations in the negative growth rate 

region. The conditional mean function of the LSTAR model deviates noticeably form the 

linear conditional mean function in the center of the data only for the South and West Census 

regions. Interestingly, highly noticeable nonlinearity exists for the Northeast Census region 

for growth rates higher than 10-percent.  

Although Figure 3 usefully compares the conditional mean functions, it does not give 

any information on the density (or strength) of the various regions in the plots. We gain more 

insight by considering the density of the conditional mean function and the switch variable. 

Figure 4 plots the kernel density estimate of the conditional mean function of the fitted 

LSTAR and the switch variable rt-d. We estimate the kernel densities from 60,000 bootstrap 

simulations of the fitted models using the Nadaraya-Watson kernel estimator. We choose the 

kernel regression bandwidth using the least-squares cross validation and a second order 

Gaussian kernel. The density plots in Figure 4 reveal that a highly dense region exists at the 

low growth rates for the Northeast, Midwest, and South Census regions, as well as for the US 

series. The density at low values, where deviation from linearity is particularly prevalent, is 

high for South and Midwest. A strong peak exists, but dense in a narrow range, at the 

negative growth rate for Midwest . Actually, this dense range causes the rejection of 

linearity, otherwise the series behaves close to a linear process. For the West Census region, 
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we see high density at extreme positive growth rates, which radically differs from the other 

series. For the US series, peaks exist in all regions where there are deviation from linearity, 

naturally expected as the US series aggregates all Census regions.  

Combining the information from Figure 3 and 4, we clearly see why nonlinear AR 

models do not strongly dominate linear ones. Except for the South and West Census regions, 

we observe the nonlinearity more in those periods where extremes house price changes 

occur. Also for the South and West Census regions, nonlinearity exists around the center of 

the data as well, but these associate with less density than the extremes. Given that 

nonlinearity dominates usually on the extremes and forecasts even from nonlinear but 

stationary models return to mean, nonlinear and linear models will produce similar forecasts. 

This will hold even though the nonlinear models fit and describe the data better. 

To compare the fitted AR and STAR models more formally, we follow Rapach and 

Wohar (2006) and employ the analysis of Corradi and Swanson (2003), who recently 

developed a formal test of nonlinear (STAR) and linear AR models. Their test provides a 

distributional analog of the mean squared error metric. This test permits the comparison of 

the conditional densities for rt given xt, where xt is the vector of lagged rt values reported in 

Table 3 and 4 for each model, corresponding to two different fitted models (i.e., LSTAR and 

linear AR models), each of which may contain some misspecification. More specifically, we 

use the Corradi and Swanson (2003) ZT statistic to test the null hypothesis that the 

conditional densities corresponding to the fitted LSTAR and linear AR models generate 

equal accuracy relative to the true conditional density against the alternative hypothesis that 

the conditional density corresponding to the LSTAR model proves more accurate than the 

conditional density corresponding to the linear AR benchmark model. We compute the ZT 



29 
 

statistic by integrating over a fine grid running from the minimum to the maximum values of 

the in-sample rt observations. A second test statistic, R–ZT, integrates over two grids of 

values comprising the first and fourth quartiles of the in-sample observations. Thus, in this 

latter case, we focus our comparison of the conditional distributions corresponding to the 

fitted LSTAR and linear AR models in the tails of the distributions of in-sample rt 

observations. For both tests, we generate bootstrapped critical values using 2,000 replicates 

with the block bootstrapping method. 

Table 8 reports the Corradi and Swanson (2003) test results for the fitted LSTAR and 

its linear AR counterpart. Following Corradi and Swanson (2003), our inferences rely on 

block bootstrapped critical values. The ZT statistics reported in column 2 do not reject the 

null hypothesis of equal conditional density accuracy for the LSTAR models in the US or its 

four Census regions relative to the AR benchmark models. This indicates that the conditional 

densities for rt given xt corresponding to the LSTAR models do not significantly differ in 

accuracy from the conditional densities corresponding to linear AR benchmark models. In 

addition, limiting our focus to the first and fourth quartiles, the R–ZT statistic rejects the null 

hypothesis for none of the series. In sum, the findings in Table 8 imply that fitted LSTAR 

models generally conform closely to fitted linear AR models. This conclusion matches nicely 

the fact that the typical point and density forecasts generated by the LSTAR models do not 

improve much on forecasts generated by linear AR models at short horizons (see Section 5 

above). 

As a last exercise, we compare the forecasting performance of linear and nonlinear 

models in an ex-ante dynamic forecasting design. Although the data actually exist for the 

period that we consider, we use a dynamic forecasting design and do not utilize the actual 
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data for forecasting. Figure 5 plots the 25-step dynamic point forecasts (dashed line) for rt 

from the estimated linear AR models for the period 2010:6 to 2012:6 and fan charts formed 

from 50- to 95-percent interval forecasts. We also plot (solid line) the actual data over 2009:5 

to 2012:6. Similarly, Figure 6 plots the forecasts from the LSTAR models. For the LSTAR 

models, we generate each point forecast by 2,000 parametric bootstrap and we use an 

additional 2,000 bootstrap simulations to obtain interval forecast for each time point. We 

calculate the interval forecasts using the highest density region estimator of Hyndman 

(1996). For the point forecasts, the LSTAR models do better than the linear AR models for 

the West and Northeast Census regions. Indeed, forecasts for these two regions are 

exceptionally good. The linear AR model generates poorer forecasts for the West region. For 

the US, Midwest, and South regions, the AR and LSTAR models generate forecasts that 

probably do not dominate each other. The LSTAR model certainly performs well for the US 

series until 2011:12, where an upward trend starts in house prices. For the interval forecasts, 

both linear AR and LSTAR models do offer good coverage of the actual data. The 95-percent 

confidence bands almost always cover the actual values. The LSTAR models, however, do in 

general show narrower interval forecasts, particularly for the Northeast and West regions. 

Notably, the linear and nonlinear AR models produce the worst forecasts for the Midwest. 

7. Conclusion 

A large number of recent papers show that a strong link exists between the housing market 

and economic activity. In addition, these papers also highlight that house-price movements 

lead real activity, inflation, or both. Given this, models that forecast house price movements 

can give policy makers insight as to the direction the economy might head and, hence, can 

improve the design of appropriate policies. Hence, good policy requires that one first deduce 
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the underlying nature of the data-generating process for house prices (i.e., whether linear or 

non-linear), since presuming that house prices follow a linear process can lead to incorrect 

forecasts for not only house prices, but the economy, in general.  

This paper considers several issues. First, we test housing prices in the US and its 

four Census regions to see if they conform to nonlinear or linear AR models. We estimate the 

models using monthly data over the 1968:1 to 2000:12 in-sample period, and forecasts over 

the 2001:1 to 2010:5 out-of-sample period. That analysis chooses the LSTAR model as the 

best non-linear specification. In other words, the LSTAR model dominates the ESTAR 

model. 

Second, we compare the one- to 48-month-ahead out-of-sample forecasting 

performances of the LSTAR model with the linear AR model for point forecasts in the out-

of-sample period. We find that the linear model performs the best at short horizons, but the 

non-linear model dominates at longer horizon.  

Third, we do not find strong evidence to support the LSTAR model specification over 

the linear AR specifications. Both models produce similar findings with regard to interval 

forecasts, where the South region proves the major exception whereby we usually cannot 

reject conditional coverage for the LSTAR model, but do usually reject conditional coverage 

for the linear AR model. 

Fourth, we find limited evidence that the LSTAR model dominates the linear AR 

model in density forecasting, but only for the US as a whole. Almost no evidence exists 

supporting this conclusion at the Census region level. That is, the linear AR and LSTAR 

models produce similar forecasting performance. 
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Fifth, our paper finds that the LSTAR model dominates the linear AR model at point 

forecasting at longer horizons, but that the linear AR model dominates at shorter horizons. 

Moreover, little evidence exists suggesting that either model dominates in interval and 

density forecasting. 

Finally, in an ex-ante dynamic 25-step dynamic forecasting design over 2010:6 to 

2012:6, we find that the LSTAR model dominates the linear AR model for the Northeast and 

West regions, as well as for the US. Although both the LSTAR and linear AR models 

generate interval forecasts with good coverage, the LSTAR models, in general, experience 

narrower confidence bands. 



33 
 

References 
 
Abelson, P., Joyeux, R., Milunovich. G., & Chung, D., 2005. Explaining house prices in 

Australia: 1970-2003. Economic Record 81, 96-103. 
 
Balcilar, M., Gupta, R., & Shah, Z. B., 2011. An in-sample and out-of-sample empirical 

investigation of the nonlinearity in house prices of South Africa. Economic Modelling 
28, 891-899. 

 
Bao, Y. C., Guay, C. L., & Li, S. M., 2009. A small open economy DSGE model with a 

housing sector. Preliminary Draft paper prepared for the Conference of Economists, 
Department of Economics, University of Melbourne. 

 
Berkowitz, J., 2001. Testing density forecasts, with applications to risk management. Journal 

of Business and Economic Statistics 19, 465-474. 
 
Bernanke, B. S., & Gertler, M., 1995. Inside the black box: The credit channel of monetary 

policy transmission. The Journal of Economic Perspectives 9, 27–48.  
 
Bernanke, B. S., & Gertler, M., 1999. Monetary policy and asset volatility. Federal Reserve 

Bank of Kansas City, Economic Review 84, 17-52. 
 
Bhatia, K., 1987. Real estate assets and consumer spending. Quarterly Journal of Economics 

102, 437-443. 
 
Borio, C. E. V., Kennedy, N., & Prowse, S. D., 1994. Exploring aggregate asset price 

fluctuations across countries: Measurement, determinants, and monetary policy 
implications. BIS Economics Paper No. 40. 

 
Bradley, M. D., & Jansen, D. W., 1997. Nonlinear business cycle dynamics: Cross-country 

evidence on the persistence of aggregate shocks. Economic Inquiry 35, 495-509. 
 
Breunig, R., Najarian, S., & Pagan, A., 2003. Specification testing of Markov switching 

models. Oxford Bulletin of Economics and Statistics 65, 703–725. 

Campbell, J. Y., & Coco, J. F., 2006. How do house prices affect consumption? Evidence 
from microdata. NBER Working Paper No. 11534. 

 
Case, K. E., 1992. The real estate cycle and the economy: Consequences of the 

Massachusetts boom of 1984-1987. Urban Studies 29, 171-183. 
 
Case, K., Shiller, R., & Quigley, J. 2005. Comparing wealth effects: The stock market versus 

the housing market. Advances in Macroeconomics 5, 1-32. 
 
Christensen, I., Corrigan, P., Mendicino, C. & Nishiyama, S-I., 2009. Consumption, housing 

collateral, and the Canadian business cycle. Bank of Canada Working paper 2009-26, 
Bank of Canada. 



34 
 

 
Christoffersen, P., 1998. Evaluating interval forecasts. International Economic Review 39, 

841-862. 
 
Clark, T.E., & McCracken, M. W., 2004. Evaluating long-horizon forecasts. University of 

Missouri at Columbia manuscript. 
 
Clements, M. P., & Smith, J., 2000. Evaluating the forecast densities of linear and non-linear 

models: Applications to output growth and unemployment. Journal of Forecasting 
19, 255-276. 

 
Cook, S & Speight, A., 2007. Temporal dependencies in UK regional house prices. 

Quantitative and Qualitative Analysis in Social Sciences, 1(3):63-80. 
 
Corradi, V., & Swanson, N. R., 2003. A test for comparing multiple misspecified conditional 

distributions. Rutgers University, manuscript. 
 
Diebold, F. X., Gunther, T., & Tay, A., 1998. Evaluating density forecasts with applications 

to financial risk management. International Economic Review 39, 863-883. 
 
Diebold, F. X., & Mariano, R. S., 1995. Comparing predictive accuracy. Journal of Business 

and Economics Statistics 13, 253-263. 
 
Diebold, F. X., & Nason, J. A., 1990. Nonparametric exchange rate prediction? Journal of 

International Economics 28, 315–332. 

 
Doornik, J. A., & Hansen, H., 1994. An omnibus test for univariate and multivariate 

normality. Nuffield College, manuscript. 
 
Eitrheim, O., & Teräsvirta, T., 1996. Testing the adequacy of smooth transition 

autoregressive models. Journal of Econometrics 74, 59–75. 
 
Elliott, J. W., 1980. Wealth and wealth proxies in a permanent income model. Quarterly 

Journal of Economics 95, 509-535.  
 
Enders, W. & Siklos, P., 2001, Cointegration and threshold adjustment. Journal of Business 

& Economic Statistics 19, 166-176. 
 
Engelhardt, G. V., 1996. House prices and home owner saving behavior. Regional Science 

and Urban Economics 26, 313-336. 
 
Engelhardt, G. V., 2001. Nominal loss aversion, housing equity constraints, and household 

mobility: Evidence from the United States. Center for Policy Research Working 
Paper, No. 42, 1–61. 

 



35 
 

Englund, P., & Ioannides, Y. M., 1997. House price dynamics: an international empirical 
perspective. Journal of Housing Economics 6, 119–136. 

 
Escribano, A. & Jordá, O., 1999. Improved testing and specification of smooth transition 

regression models. In P. Rothman, ed., Nonlinear Time Series Analysis of Economic 
and Financial Data, Dordrecht: Kluwer Academic Publishers, 289–320. 

 
Falk, B., 1986. Further evidence on the asymmetric behavior of economic time series over 

the business cycle. Journal of Political Economy 94, 1069-1109. 
 
Forni M, Hallin, M, Lippi, M, & Reichlin, L., 2003. Do financial variables help forecasting 

inflation and real activity in the euro area? Journal of Monetary Economics 50, 1243-
1255. 

 
Genesove, D., & Mayer, C. J., 2001. Nominal loss aversion and seller behavior: Evidence 

from the housing market. Quarterly Journal of Economics 116, 1233–1260. 
 
Ghent, A., 2009. Sticky housing and the real effects of monetary policy. Mimeo, Department 

of Real Estate, Zicklin School of Business, Baruch College, CUNY. 
 
Ghent, A., & Owyang, M., 2009. Is housing the business cycle? Evidence from US cities, 

Mimeo, Department of Real Estate, Zicklin School of Business, Baruch College, 
CUNY. 

 
Granger, C. W. J., & Teräsvirta, T., 1993. Modelling nonlinear economic relationships. 

Oxford University Press, Oxford. 
 
Green, R., 1997. Follow the leader: How changes in residential and non-residential 

investment predict changes in GDP. Real Estate Economics 25, 253–270. 
 
Gupta, R., & Das, S., 2010. Predicting downturns in the US housing market: A Bayesian 

approach. The Journal of Real Estate Finance and Economics 41, 294-319. 
 
Hamilton, J. D., 1989. A new approach to the economic analysis of nonstationary time series 

and the business cycle. Econometrica 57, 357–384. 
 
Hansen, B. E. 2006. Interval forecasts and parameter uncertainty. Journal of Econometrics 

135, 377-398.  
 
Harvey, D., Leybourne, S., & Newbold, P., (1997). Testing the equality of prediction mean 

squared errors. International Journal of Forecasting 13, 281-291. 
 
Hyndman, R. J., 1996. Computing and graphing highest density regions. American 

Statistician 50, 120-126 
 



36 
 

Iacoviello, M., 2005. House prices, borrowing constraints, and monetary policy in the 
business cycle. American Economic Review 95, 739–764. 

 
Iacoviello, M., & Neri S., 2010. Housing market spillovers: Evidence from an estimated 

DSGE model. American Economic Journal: Macroeconomics 2, 125-164. 
 
Kim, S-W., & Bhattacharya. R., (2009). Regional housing prices in the USA: An empirical 

investigation of nonlinearity. Journal of Real Estate Finance and Economics 38, 443-
460. 

 
Leamer, E. E., 2007. Housing is the business cycle. In Housing, Housing Finance, and 

Monetary Policy, Economic Symposium Conference Proceedings, Kansas City 
Federal Reserve Bank, 149-233. 

 
Levin, L., 1998. Are assets fungible? Testing the behavioral theory of life-cycle savings. 

Journal of Economic Organization and Behavior 36, 59-83. 
 
Luukkonen, R., Saikkonen, P., & Teräsvirta, T., 1988. Testing linearity against smooth 

transition autoregressive models. Biometrika 75, 491–499. 
 
McCracken, M. W., (2004). Asymptotics for out-of-sample tests of Granger causality. 

University of Missouri, Columbia, manuscript. 
 
Mehta, C. R., & Patel, N. R., (1998). Exact inference for categorical data. In P. Armitage, & 

T. Colton (Eds.), Encyclopedia of biostatistics (pp. 1411 – 1422). Chichester: John 
Wiley. 

 
Muellbauer, J., & Murphy, A., 1997. Booms and busts in the UK housing market. Economic 

Journal 107, 701–727. 
 
Neftci, S., 1984. Are economic time series asymmetric over the business cycle? Journal of 

Political Economy 92, 307-328. 
 
Newey, W. K., & West, K. D., 1987. A simple, positive semi-definite, heteroskedasticity and 

autocorrelation consistent covariance matrix, Econometrica 55, 703-708. 
 
Pagan, A., 2002. Learning about models and their fit to data. International Economic Journal 

16, 1–18. 
 
Pariès, M. D., & Notarpietro, A., 2008.Monetary policy and housing prices in an estimated 

DSGE model for the US and Euro area. Working paper series no 972, European 
Central Bank. 

 
Pavlidis, E., Paya, I., Peel, D., & Spiru, A., 2009. Bubbles in house prices and their impact on 

consumption: Evidence for the US. Department of Economics Working paper 
2009/025. Lancaster University Management School. 



37 
 

 
Peek, J., 1983. Capital gains and personal saving behavior. Journal of Money, Credit, and 

Banking 15, 1-23. 
 
Rapach, D. E., & Strauss, J. K., 2006. The long-run relationship between consumption and 

housing wealth in the Eighth District States. Federal Reserve Bank of St. Louis 
Regional Economic Development 2(2), 140-147. 

 
Rapach, D. E., & Wohar, M. E., 2006. The out-of-sample forecasting performance of 

nonlinear models of real exchange rate behavior. International Journal of 
Forecasting 22, 341-361. 

 
Sarantis, N., 2001. Nonlinearities, cyclical behaviour and predictability in stock markets: 

International evidence. International Journal of Forecasting 17, 459–482. 
 
Seslen, T., 2004. Housing price dynamics and household mobility decisions. Mimeo, 

University of Southern California. 
 
Siliverstovs, B., & van Dijk, D., 2003. Forecasting industrial production with linear, 

nonlinear, and structural change models. Econometric Institute Report EI 2003-16.  
 
Skalin, J., & Teräsvirta, T., 1999. Another look at Swedish business cycles: 1861–1988. 

Journal of Applied Econometrics 14, 359–378. 
 
Skalin, J., & Teräsvirta, T., 2002. Modelling asymmetries and moving equilibria in 

unemployment rates. Macroeconomic Dynamics 6, 202—241. 
 
Skinner, J., 1989. Housing wealth and aggregate saving. Regional Science and Urban 

Economics 19, 305-324.  
 
Smets, F., 2007. Commentary: Housing is the business cycle. In Housing, Housing Finance, 

and Monetary Policy, Economic Symposium Conference Proceedings, Kansas City 
Federal Reserve Bank, 235-243. 

 
Stock, J. H., & Watson, M. W., 2003. Forecasting output and inflation: The role of asset 

prices. Journal of Economic Literature 41, 788-829. 
 
Teräsvirta, T., & Anderson, H. M., 1992. Characterizing nonlinearities in business cycles 

using smooth transition autoregressive models. Journal of Applied Econometrics 
7:S119–S136.  

 
Teräsvirta, T., 1994. Specification, estimation and evaluation of smooth transition 

autoregressive models. Journal of the American Statistical Association 89:208–218. 
 
Tsay, R., 1989. Testing and modeling threshold autoregressive processes. Journal of the 

American Statistical Association 84:231–240. 



38 
 

 
van Dijk, D., & Franses, P. H., 2003. Selecting a nonlinear time series model using weighted 

tests of equal forecast accuracy. Oxford Bulletin of Economics and Statistics 65, 727–
744. 

 
van Dijk, D., Teräsvirta, T., & Franses, P. H., 2002. Smooth transition autoregressive 

models-a survey of recent developments. Econometric Reviews, 21(1):1-47. 
 
Vargas-Silva, C., 2008. Monetary policy and the US housing market: A VAR analysis 

imposing sign restrictions. Journal of Macroeconomics 30, 977–990. 
 
Wallis, K., 2003. Chi-squared tests of interval and density forecasts, and the Bank of 

England’s fan charts. International Journal of Forecasting 19, 165– 175. 
 



39 
 

Table 1 LM-STR test for linearity 
 
Delay (d) 1 2 3 4 5 6 7 8 
 LM1: LM Test of 01H : 2 0iφ =  in equation (4) with k=1 
US 
(p*=15) 

1.745 
(0.041) 

1.169 
(0.295) 

1.579 
(0.077) 

1.306 
(0.196) 

1.332 
(0.180) 

1.377 
(0.156) 

0.848 
(0.623) 

0.943 
(0.516) 

Northeast 
(p*=14) 

1.413 
(0.144) 

0.898 
(0.561) 

1.475 
(0.118) 

1.356 
(0.173) 

1.758 
(0.044) 

1.607 
(0.075) 

1.240 
(0.244) 

1.924 
(0.023) 

Midwest 
(p*=17) 

1.484 
(0.098) 

1.538 
(0.080) 

1.658 
(0.049) 

1.509 
(0.089) 

1.379 
(0.144) 

1.119 
(0.333) 

1.426 
(0.122) 

1.280 
(0.203) 

South 
(p*=13) 

1.422 
(0.147) 

1.523 
(0.107) 

1.085 
(0.371) 

0.965 
(0.486) 

0.987 
(0.464) 

0.873 
(0.582) 

0.828 
(0.630) 

0.748 
(0.715) 

West 
(p*=14) 

0.834 
(0.632) 

1.050 
(0.403) 

1.453 
(0.127) 

1.101 
(0.355) 

0.884 
(0.577) 

0.978 
(0.475) 

0.788 
(0.682) 

0.623 
(0.846) 

 LM2: LM Test of 01′H : 2 3 0i iφ φ= = in equation (4) with k=2 
US 
(p*=15) 

1.748 
(0.011) 

1.568 
(0.033) 

2.233 
(0.000) 

2.500 
(0.000) 

1.809 
(0.007) 

1.570 
(0.032) 

0.932 
(0.572) 

1.176 
(0.246) 

Northeast 
(p*=14) 

1.378 
(0.100) 

0.997 
(0.473) 

0.962 
(0.525) 

1.100 
(0.336) 

1.770 
(0.011) 

1.759 
(0.012) 

1.439 
(0.074) 

1.768 
(0.011) 

Midwest 
(p*=17) 

1.265 
(0.155) 

1.131 
(0.289) 

1.117 
(0.306) 

1.034 
(0.421) 

1.089 
(0.342) 

0.964 
(0.530) 

1.174 
(0.239) 

1.355 
(0.096) 

South 
(p*=13) 

1.471 
(0.068) 

1.362 
(0.115) 

1.020 
(0.441) 

1.050 
(0.400) 

0.924 
(0.575) 

0.857 
(0.670) 

0.951 
(0.535) 

0.974 
(0.503) 

West 
(p*=14) 

1.356 
(0.112) 

1.245 
(0.187) 

1.355 
(0.113) 

1.283 
(0.158) 

1.296 
(0.149) 

1.084 
(0.355) 

0.717 
(0.855) 

0.854 
(0.683) 

 LM3: LM Test of 01H ′′ : 2 3 4 0i i iφ φ φ= = =  in equation (4) with k=3 
US 
(p*=15) 

1.361 
(0.071) 

1.193 
(0.196) 

1.877* 
(0.001) 

1.813 
(0.002) 

1.711 
(0.005) 

1.236 
(0.154) 

0.940 
(0.585) 

0.915 
(0.629) 

Northeast 
(p*=14) 

1.485 
(0.033) 

0.982 
(0.507) 

0.972 
(0.525) 

1.180 
(0.217) 

1.519 
(0.026) 

1.458 
(0.039) 

1.257 
(0.142) 

1.600* 
(0.014) 

Midwest 
(p*=17) 

1.229* 
(0.151) 

1.038 
(0.410) 

1.131 
(0.264) 

1.107 
(0.298) 

1.094 
(0.317) 

0.919 
(0.633) 

1.113 
(0.289) 

1.166 
(0.218) 

South 
(p*=13) 

1.785* 
(0.004) 

1.427 
(0.054) 

0.994 
(0.486) 

1.029 
(0.428) 

0.751 
(0.860) 

0.725 
(0.888) 

0.724 
(0.889) 

0.899 
(0.646) 

West 
(p*=14) 

1.082 
(0.344) 

1.211 
(0.184) 

1.185 
(0.211) 

1.136 
(0.269) 

1.211* 
(0.184) 

0.846 
(0.741) 

0.630 
(0.965) 

1.001 
(0.475) 

 LM4: LM Test of 01H ′′′ : 2 3 4 5 0i i i iφ φ φ φ= = = =  in equation (4) with k=4 
US 
(p*=15) 

1.186 
(0.182) 

1.442 
(0.026) 

1.784 
(0.001) 

1.591 
(0.007) 

1.619 
(0.005) 

1.178 
(0.191) 

0.886 
(0.709) 

0.94 
(0.602) 

Northeast 
(p*=14) 

1.367 
(0.053) 

1.069 
(0.355) 

1.092 
(0.316) 

1.151 
(0.229) 

1.486 
(0.020) 

1.763 
(0.001) 

1.331 
(0.070) 

1.840 
(0.001) 

Midwest 
(p*=17) 

1.043 
(0.398) 

0.865 
(0.761) 

1.109 
(0.279) 

0.892 
(0.710) 

0.974 
(0.538) 

0.809 
(0.851) 

1.094 
(0.305) 

1.196 
(0.161) 

South 
(p*=13) 

1.582 
(0.010) 

1.296 
(0.096) 

1.163 
(0.219) 

1.093 
(0.318) 

0.647 
(0.971) 

0.761 
(0.884) 

0.791 
(0.847) 

1.258 
(0.123) 

West 
(p*=14) 

1.057 
(0.376) 

1.210 
(0.161) 

1.245 
(0.128) 

1.051 
(0.387) 

1.486 
(0.020) 

1.065 
(0.362) 

0.811 
(0.828) 

0.962 
(0.555) 

Note: The numbers in parenthesis equal the lowest p-values associated with the corresponding null 
hypothesis. The minimum p-value associated with the LM3 test ( 01H′′ : 2 3 4 0i i iφ φ φ= = =  in equation 
(4) with the corresponding d) is marked with *. Bold values indicate significance at the 5-percent level. 
p* equals the lag order in the linear AR model selected by the AIC. 
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Table 2 Test of the appropriate STAR model 
 
 US Northeast Midwest South West 
H04 : φ4i = 0, 
i = 1,...,p 

1.137 
(0.322) 

0.993 
(0.460) 

1.142 
(0.313) 

0.946 
(0.505) 

0.861 
(0.602) 

H03 : φ3i = 0, 
given  φ4i = 0 

1.397 
(0.147) 

 

0.479 
(0.943) 

0.608 
(0.885) 

0.956 
(0.495) 

1.242 
(0.243) 

H02 : φ2i = 0, 
given  φ3i =φ4i = 0 

1.579 
(0.077) 

 

1.475 
(0.118) 

1.658 
(0.049) 

1.085 
(0.371) 

1.453 
(0.127) 

H0E : φ3i = 0, 
φ5i = 0 

1.272 
(0.161) 

 

1.171 
(0.256) 

1.089 
(0.344) 

1.235 
(0.203) 

0.976 
(0.504) 

H0L : φ2i = 0, 
φ4i = 0 

1.329 
(0.123) 

 

0.997 
(0.473) 

1.118 
(0.307) 

1.369 
(0.112) 

1.199 
(0.230) 

Optimal delay d 3 8 1 1 5 
Optimal lag p 15 14 17 13 14 
Selection model LSTAR LSTAR LSTAR LSTAR LSTAR 
Note: The values in parentheses equal the p-values for the nested tests H04, H03, and H02; 

and the H0E and H0L tests. H0E and H0L equal the model selection tests 
recommended in Escribano and Jordá (1999) and obtained from equation (4) with 
k=4 for the corresponding restrictions. Bold values indicate the lowest p-value for 
the nested and the H0E and H0L tests. The model selection reflects the nested H04, 
H03, and H02 tests. 
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Table 3 Estimation of the STAR Model 
 
 
US: Adjusted R-Square =  0.897 , SER =  0.000112 , LLV =  1154.496  
 
rt = 0.018(0.003) + 0.608(0.053)rt-1 + 0.284(0.067)rt-2 - 0.214(0.116)rt-3 - 0.327(0.100)rt-5 + 0.204(0.105)rt-6  

+ 0.247(0.086)rt-10 - 0.191(0.088)rt-11 - 0.550(0.056)rt-12 + 0.282(0.057)rt-13 + 0.068(0.045)rt-15  
+ [-0.015(0.004) + 0.224(0.111)rt-3 + 0.431(0.125)rt-5 - 0.203(0.121)rt-6 - 0.365(0.104)rt-10  
+ 0.332(0.109)rt-11 + 0.137(0.071)rt-14]×[1+exp{-2.751(1.179)[rt-3 - 0.037(0.003)]}]-1 + εt 

 
Northeast: Adjusted R-Square =  0.799 , SER =  0.000797 , LLV =  795.017  
 
rt = 0.004(0.002) + 0.545(0.067)rt-1 + 0.200(0.057)rt-2 + 0.125(0.049)rt-4 + 0.144(0.049)rt-8 - 0.488(0.053)rt-12  

+ 0.182(0.061)rt-13 + 0.217(0.059)rt-14 + [0.095(0.033) + 0.195(0.098)rt-1 - 0.705(0.177)rt-6  
+ 0.119(0.083)rt-12] × [1+exp{-7.523(1.482)[rt-6 - 0.153(0.008)]}]-1 + εt 

 
Midwest: Adjusted R-Square =  0.831 , SER =  0.000192 , LLV =  1049.457  
 
rt = 0.007(0.008) + 1.241(0.308)rt-1 - 0.823(0.321)rt-2 + 0.534(0.280)rt-4 + 0.639(0.300)rt-5  

- 0.709(0.314)rt-6 + 0.477(0.214)rt-7 - 0.377(0.222)rt-10 + 0.389(0.118)rt-11  
+ 0.368(0.055)rt-13 - 0.844(0.277)rt-14 + 0.414(0.200)rt-17 + [-0.006(0.009) - 0.631(0.302)rt-1  
+ 1.137(0.328)rt-2 - 0.536(0.291)rt-4 - 0.643(0.317)rt-5 + 0.801(0.327)rt-6 - 0.453(0.230)rt-7  
+ 0.473(0.233)rt-10 - 0.409(0.133)rt-11 - 0.586(0.054)rt-12 + 0.937(0.286)rt-14  
- 0.427(0.215)rt-17] × [1+exp{-5.949(3.115)[rt-1 - 0.010(0.005)]}]-1 + εt 

 
South: Adjusted R-Square =  0.885 , SER =  0.000158 , LLV =  1097.234  
 
rt = 0.030(0.006) - 0.250(0.210)rt-1 + 0.504(0.151)rt-2 + 0.121(0.049)rt-4 + 0.135(0.091)rt-5  

+ 0.097(0.043)rt-6 - 0.478(0.072)rt-11 - 0.448(0.077)rt-13 + [-0.028(0.006)  
+ 1.095(0.208)rt-1 - 0.489(0.167)rt-2 - 0.219(0.101)rt-5 + 0.429(0.092)rt-11 - 0.505(0.070)rt-12  
+ 0.971(0.092)rt-13]x[1+exp{-4.481(3.280)[rt-1 - 0.003(0.004)]}]-1 + εt 

 
West: Adjusted R-Square =  0.878 , SER =  0.000474 , LLV =  891.141  
 
rt = 0.005(0.003) + 0.744(0.069)rt-1 + 0.185(0.049)rt-3 - 0.265(0.066)rt-12 + 0.239(0.045)rt-14  

+ [-0.006(0.005) - 0.310(0.087)rt-1 + 0.331(0.075)rt-2 + 0.133(0.060)rt-4 - 0.338(0.096)rt-12  
+ 0.276(0.073)rt-13]x[1+exp{-5.474(4.172)[rt-5 - 0.039(0.008)]}]-1 + εt 

 
Note: The values in the parenthesis correspond to the standard errors. SER stands for the standard error of the 

regression, while LLV stands for the log likelihood value. We include only significant lags following 
Teräsvirta (1994) and Sarantis (2001). 
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Table 4 Estimation of the AR Model 
 
 
US: Adjusted R-Square =  0.886 , SER =  0.000131 , LLV =  1125.966  
 
rt = 0.002(0.001) + 0.677(0.05)rt-1 + 0.209(0.051)rt-2 + 0.097(0.051)rt-3 - 0.516(0.046)rt-12 + 0.395(0.053)rt-13 + 

0.104(0.043)rt-15 + εt 
 
Northeast: Adjusted R-Square =  0.787 , SER =  0.000876 , LLV =  777.345  
 
rt = 0.004(0.002) + 0.607(0.051)rt-1 + 0.191(0.059)rt-2 + 0.106(0.05)rt-3 + 0.074(0.042)rt-6 - 0.471(0.049)rt-12 + 

0.237(0.059)rt-13 + 0.19(0.052)rt-14 + εt 
 
Midwest: Adjusted R-Square =  0.823 , SER =  0.000217 , LLV =  1035.921  
 
rt = 0.003(0.002) + 0.629(0.047)rt-1 + 0.206(0.049)rt-2 + 0.136(0.047)rt-4 + 0.088(0.044)rt-10 - 0.555(0.05)rt-12 + 

0.358(0.052)rt-13 + 0.085(0.039)rt-16 + εt 
 
South: Adjusted R-Square =  0.876 , SER =  0.000179 , LLV =  1070.874  
 
rt = 0.002(0.001) + 0.832(0.032)rt-1 + 0.118(0.047)rt-4 - 0.087(0.055)rt-5 + 0.119(0.045)rt-6 - 0.48(0.045)rt-12 + 

0.455(0.044)rt-13 + εt 
 
West: Adjusted R-Square =  0.873 , SER =  0.000514 , LLV =  876.167  
 
rt = 0.003(0.002) + 0.555(0.05)rt-1 + 0.268(0.056)rt-2 + 0.177(0.047)rt-3 - 0.503(0.047)rt-12 + 0.241(0.056)rt-13 + 

0.221(0.05)rt-14 + εt 
 
Note: The values in the parenthesis correspond to the standard errors. SER stands for the standard error of 

regression, while LLV stands for the log likelihood value. We include only significant lags following 
Teräsvirta (1994) and Sarantis (2001). 
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Table 5 Out-of-sample point forecast evaluation, linear AR and STAR models 
(1) 

ha 

(2) 

ARb 

(3) 

STAR/ARc 

(4) 

M-DMd 

(5) 

MW-DMe 

 (6) 

ARb 

(7) 

STAR/ARc 

(8) 

M-DMd 

(9) 

MW-DMe 

 US, 2001:1-2010:5 out of sample period  Northeast, 2001:1-2010:5 out of sample period 

1 
0.02 1.26 -3.71 [1.00] 

{0.58} 
-3.12 [1.00] 
{0.50} 

 0.05 1.21 -2.58 [0.99] 
{0.27} 

-2.33 [0.99] 
{0.21} 

2 
0.03 1.11 -1.27 [0.90] 

{0.73} 
-1.20 [0.88] 
{0.54} 

 0.06 1.03 -0.39 [0.65] 
{0.24} 

-1.38 [0.92] 
{0.43} 

3 
0.04 1.09 -1.01 [0.84] 

{0.75} 
-1.06 [0.85] 
{0.60} 

 0.06 1.05 -0.44 [0.67] 
{0.46} 

-1.57 [0.94] 
{0.63} 

6 
0.07 1.02 -0.18 [0.57] 

{0.90} 
-0.35 [0.64] 
{0.82} 

 0.06 0.89 0.87 [0.19] 
{0.48} 

-0.10 [0.54] 
{0.50} 

9 
0.09 0.92 0.66 [0.26] 

{0.95} 
0.38 [0.35] 
{0.90} 

 0.08 0.83 1.53 [0.06] 
{0.53} 

0.76 [0.22] 
{0.52} 

12 
0.14 0.63 2.28 [0.01] 

{0.41} 
2.18 [0.02] 
{0.26} 

 0.09 0.68 2.13 [0.02] 
{0.35} 

1.52 [0.07] 
{0.45} 

18 
0.37 0.26 1.75 [0.04] 

{0.22} 
1.74 [0.04] 
{0.16} 

 0.09 0.55 1.53 [0.07] 
{0.23} 

1.39 [0.08] 
{0.29} 

24 
0.83 0.12 1.32 [0.09] 

{0.36} 
1.35 [0.09] 
{0.25} 

 0.10 0.67 1.33 [0.09] 
{0.18} 

1.34 [0.09] 
{0.17} 

30 
0.85 0.12 1.25 [0.11] 

{0.40} 
1.26 [0.11] 
{0.35} 

 0.11 0.86 1.48 [0.07] 
{0.15} 

1.40 [0.08] 
{0.16} 

36 
0.48 0.23 1.31 [0.10] 

{0.06} 
1.31 [0.10] 
{0.05} 

 0.13 0.92 1.76 [0.04] 
{0.07} 

1.74 [0.04] 
{0.08} 

42 
0.22 0.52 1.43 [0.08] 

{0.06} 
1.44 [0.08] 
{0.05} 

 0.14 0.92 2.11 [0.02] 
{0.08} 

2.24 [0.01] 
{0.08} 

48 
0.13 0.9 1.35 [0.09] 

{0.11} 
1.14 [0.13] 
{0.11} 

 0.15 0.92 2.88 [0.00] 
{0.09} 

2.92 [0.00] 
{0.09} 

 Midwest, 2001:1-2010:5 out of sample period  South, 2001:1-2010:5 out of sample period 

1 
0.03 1.55 -4.96 [1.00] 

{0.88} 
-4.86 [1.00] 
{0.92} 

 0.02 1.50 -4.20 [1.00] 
{0.56} 

-3.91 [1.00] 
{0.34} 

2 
0.04 1.46 -2.55 [0.99] 

{0.91} 
-2.68 [1.00] 
{0.88} 

 0.03 1.39 -2.46 [0.99] 
{0.83} 

-2.50 [0.99] 
{0.73} 

3 
0.04 1.30 -1.84 [0.97] 

{0.86} 
-2.13 [0.98] 
{0.82} 

 0.03 1.30 -1.92 [0.97] 
{0.81} 

-2.23 [0.99] 
{0.70} 

6 
0.05 0.98 0.12 [0.45] 

{0.82} 
-0.21 [0.58] 
{0.75} 

 0.04 0.95 0.37 [0.36] 
{0.87} 

-0.42 [0.66] 
{0.80} 

9 
0.06 0.60 2.01 [0.02] 

{0.78} 
1.94 [0.03] 
{0.51} 

 0.05 0.42 3.07 [0.00] 
{0.90} 

2.51 [0.01] 
{0.87} 

12 
0.07 0.26 1.74 [0.04] 

{0.70} 
1.73 [0.04] 
{0.45} 

 0.05 0.12 2.59 [0.01] 
{0.89} 

2.34 [0.01] 
{0.82} 

18 
0.07 0.15 1.22 [0.11] 

{0.63} 
1.26 [0.10] 
{0.37} 

 0.05 0.01 1.37 [0.09] 
{0.68} 

1.43 [0.08] 
{0.81} 

24 
0.07 0.36 1.12 [0.13] 

{0.54} 
1.15 [0.13] 
{0.33} 

 0.07 0.00 1.18 [0.12] 
{0.46} 

1.20 [0.12] 
{0.44} 

30 
0.07 0.91 0.99 [0.16] 

{0.77} 
1.17 [0.12] 
{0.31} 

 0.08 0.01 1.10 [0.14] 
{0.57} 

1.11 [0.14] 
{0.53} 

36 
0.09 0.98 1.07 [0.14] 

{0.30} 
1.76 [0.04] 
{0.08} 

 0.09 0.01 1.17 [0.12] 
{0.06} 

1.20 [0.12] 
{0.05} 

42 
0.10 0.95 2.10 [0.02] 

{0.09} 
2.71 [0.00] 
{0.07} 

 0.10 0.06 1.38 [0.09] 
{0.03} 

1.42 [0.08] 
{0.03} 

48 
0.10 0.90 4.13 [0.00] 

{0.08} 
5.10 [0.00] 
{0.06} 

 0.10 0.34 1.64 [0.05] 
{0.06} 

1.66 [0.05] 
{0.05} 
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Table 5 Out-of-sample point forecast evaluation, linear AR and STAR models 
(continued) 

(1) 

ha 

(2) 

ARb 

(3) 

STAR/ARc 

(4) 

M-DMd 

(5) 

MW-DMe 

     

 West, 2001:1-2010:5 out of sample period      

1 
0.04 1.17 -2.99 [1.00] 

{0.82} 
-2.18 [0.98] 
{0.85} 

     

2 
0.05 1.10 -1.54 [0.94] 

{0.91} 
-1.46 [0.93] 
{0.92} 

     

3 
0.06 1.06 -0.81 [0.79] 

{0.90} 
-0.95 [0.83] 
{0.91} 

     

6 
0.08 1.05 -0.50 [0.69] 

{0.84} 
-0.61 [0.73] 
{0.86} 

     

9 
0.10 1.00 0.03 [0.49] 

{0.43} 
-0.18 [0.57] 
{0.35} 

     

12 
0.12 0.95 0.57 [0.29] 

{0.26} 
0.46 [0.32] 
{0.26} 

     

18 
0.14 0.89 1.38 [0.09] 

{0.59} 
0.99 [0.16] 
{0.38} 

     

24 
0.16 0.73 1.60 [0.06] 

{0.54} 
1.45 [0.08] 
{0.40} 

     

30 
0.18 0.65 1.38 [0.09] 

{0.83} 
1.33 [0.09] 
{0.61} 

     

36 
0.21 0.65 1.33 [0.09] 

{0.34} 
1.33 [0.09] 
{0.23} 

     

42 
0.23 0.82 1.60 [0.06] 

{0.11} 
1.56 [0.06] 
{0.08} 

     

48 
0.24 0.91 1.33 [0.09] 

{0.13} 
1.27 [0.10] 
{0.11} 

     

Note: The p-values use the Student’s t distribution with (Ph – 1) degrees of freedom and appear in square brackets. Bootstrapped p-
values appear in braces and obtained with 2000 bootstrap simulations. Bold p-values indicate significance at the 10-percent 
level. Finally, 0.00 indicates less than 0.005 and 1.00 indicates greater than 0.995. 

a  Forecast horizon (in months). 
b  Linear AR model RMSFE. 
c  Ratio of the STAR model RMSFE to the linear AR model RMSFE. 
d  Modified Diebold and Mariano (1995) test statistic for the null hypothesis that the linear AR model MSFE equals the STAR 

model MSFE against the alternative hypothesis that the linear AR model MSFE exceeds the STAR model MSFE.  
e  Modified weighted Diebold and Mariano (1995) test statistic for the null hypothesis that the linear AR model weighted MSFE 

equals the STAR model weighted MSFE against the alternative hypothesis that the linear AR model weighted MSFE exceeds the 
STAR model weighted MSFE. 



45 
 

Table 6: Out-of-sample interval forecast evaluation, linear AR and STAR models 
 
(1) 
Model 

(2) 
ha 

(3) 
0.10/h 

(4) 
2
UCχ b 

(5) 
2
INDχ c 

(6) 
2
CCχ d 

A. US, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 63.94 [0.00] 3.78 [0.00] 64.65 [0.00] 
Linear AR 2 0.050 44.64 [0.00], 34.57 [0.00] 0.34 [1.00], 0.34 [1.00] 40.25 [0.00], 40.25 [0.00] 

Linear AR 3 0.033 25.97 [0.00], 19.70 [0.00], 
29.43 [0.00] 

6.89 [0.05], 6.89 [0.05], 
6.89 [0.05] 

24.50 [0.00], 24.50 [0.00], 
24.50 [0.00] 

Linear AR 4 0.025 14.29 [0.00], 11.57 [0.00], 
13.37 [0.00], 16.33 [0.00] 

0.55 [0.59], 0.55 [0.59], 
0.46 [0.60], 0.46 [0.60] 

8.71 [0.01], 8.71 [0.01], 
7.87 [0.01], 7.87 [0.01] 

STAR 1 0.10 21.25 [0.00] 1.00 [1.00] 23.13 [0.00] 
STAR 2 0.050 10.29 [0.00], 12.07 [0.00] 0.46 [0.55], 0.46 [0.55] 6.97 [0.03], 6.97 [0.03] 

STAR 3 0.033 7.81 [0.01], 4.57 [0.05], 
7.81 [0.01] 

5.66 [0.04], 5.66 [0.04], 
5.66 [0.04] 

11.65 [0.00], 11.65 [0.00], 
11.65 [0.00] 

STAR 4 0.025 2.29 [0.18], 0.57 [0.46], 
3.00 [0.09], 8.33 [0.01] 

0.17 [0.71], 0.17 [0.71], 
0.39 [0.69], 0.39 [0.69] 

1.09 [0.58], 1.09 [0.58], 
1.00 [0.64], 1.00 [0.64] 

B. Northeast, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 9.64 [0.00] 0.00 [1.00] 10.32 [0.01] 
Linear AR 2 0.050 4.57 [0.04], 8.64 [0.00] 2.19 [0.18], 2.19 [0.18] 2.21 [0.36], 2.21 [0.36] 

Linear AR 3 0.033 0.68 [0.51], 1.32 [0.32], 
3.27 [0.10] 

5.36 [0.04], 5.36 [0.04], 
5.36 [0.04] 

5.73 [0.06], 5.73 [0.06], 
5.73 [0.06] 

Linear AR 4 0.025 1.29 [0.26], 5.14 [0.04], 
0.04 [0.85], 6.26 [0.01] 

2.97 [0.13], 2.97 [0.13], 
2.48 [0.24], 2.48 [0.24] 

3.26 [0.20], 3.26 [0.20], 
2.62 [0.32], 2.62 [0.32] 

STAR 1 0.10 3.19 [0.09] 2.07 [0.18] 5.58 [0.06] 
STAR 2 0.050 3.50 [0.08], 7.14 [0.01] 2.19 [0.18], 2.19 [0.18] 2.21 [0.36], 2.21 [0.36] 

STAR 3 0.033 0.68 [0.51], 0.68 [0.51], 
3.27 [0.10] 

5.46 [0.04], 5.46 [0.04], 
5.46 [0.04] 

5.56 [0.08], 5.56 [0.08], 
5.56 [0.08] 

STAR 4 0.025 0.57 [0.46], 5.14 [0.04], 
0.33 [0.70], 3.00 [0.09] 

2.77 [0.13], 2.77 [0.13], 
3.55 [0.11], 3.55 [0.11] 

3.07 [0.24], 3.07 [0.24], 
4.08 [0.14], 4.08 [0.14] 

C. Midwest, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 70.10 [0.00] 0.08 [1.00] 69.17 [0.00] 
Linear AR 2 0.050 31.50 [0.00], 28.57 [0.00] 0.25 [1.00], 0.25 [1.00] 40.23 [0.00], 40.23 [0.00] 

Linear AR 3 0.033 19.70 [0.00], 16.89 [0.00], 
25.97 [0.00] 

2.68 [0.24], 2.68 [0.24], 
2.68 [0.24] 

25.82 [0.00], 25.82 [0.00], 
25.82 [0.00] 

Linear AR 4 0.025 28.00 [0.00], 20.57 [0.00], 
13.37 [0.00], 16.33 [0.00] 

5.71 [0.15], 5.71 [0.15], 
5.46 [0.15], 5.46 [0.15] 

21.16 [0.00], 21.16 [0.00], 
20.17 [0.00], 20.17 [0.00] 

STAR 1 0.10 35.12 [0.00] 0.74 [1.00] 35.53 [0.00] 
STAR 2 0.050 25.79 [0.00], 16.07 [0.00] 0.09 [1.00], 0.09 [1.00] 30.61 [0.00], 30.61 [0.00] 

STAR 3 0.033 7.81 [0.01], 14.30 [0.00], 
7.81 [0.01] 

5.76 [0.05], 5.76 [0.05], 
5.76 [0.05] 

19.20 [0.00], 19.20 [0.00], 
19.20 [0.00] 

STAR 4 0.025 14.29 [0.00], 14.29 [0.00], 
4.48 [0.05], 13.37 [0.00] 

1.88 [0.22], 1.88 [0.22], 
1.72 [0.24], 1.72 [0.24] 

11.84 [0.00], 11.84 [0.00], 
10.91 [0.00], 10.91 [0.00] 
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Table 6:  Out-of-sample interval forecast evaluation, linear AR and STAR models 
(continued) 

 
(1) 
Model 

(2) 
ha 

(3) 
0.10/h 

(4) 
2
UCχ b 

(5) 
2
INDχ c 

(6) 
2
CCχ d 

D. South, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 66.98 [0.00] 0.14 [1.00] 69.20 [0.00] 
Linear AR 2 0.050 28.57 [0.00], 25.79 [0.00] 1.17 [0.58], 1.17 [0.58] 31.08 [0.00], 31.08 [0.00] 

Linear AR 3 0.033 19.70 [0.00], 22.73 [0.00], 
29.43 [0.00] 

0.19 [1.00], 0.19 [1.00], 
0.19 [1.00] 

28.48 [0.00], 28.48 [0.00], 
28.48 [0.00] 

Linear AR 4 0.025 20.57 [0.00], 11.57 [0.00], 
23.15 [0.00], 16.33 [0.00] 

0.82 [0.60], 0.82 [0.60], 
0.86 [0.59], 0.86 [0.59] 

13.78 [0.00], 13.78 [0.00], 
12.91 [0.00], 12.91 [0.00] 

STAR 1 0.10 32.93 [0.00] 0.01 [1.00] 34.33 [0.00] 
STAR 2 0.050 12.07 [0.00], 4.57 [0.04] 0.48 [0.71], 0.48 [0.71] 15.64 [0.00], 15.64 [0.00] 

STAR 3 0.033 14.30 [0.00], 9.76 [0.00], 
9.76 [0.00] 

1.66 [0.39], 1.66 [0.39], 
1.66 [0.39] 

10.25 [0.01], 10.25 [0.01], 
10.25 [0.01] 

STAR 4 0.025 7.00 [0.01], 0.57 [0.46], 
10.70 [0.00], 4.48 [0.05] 

0.06 [1.00], 0.06 [1.00], 
0.02 [1.00], 0.02 [1.00] 

1.87 [0.43], 1.87 [0.43], 
1.40 [0.58], 1.40 [0.58] 

E. West, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 55.23 [0.00] 17.58 [0.00] 65.75 [0.00] 
Linear AR 2 0.05 14.00 [0.00], 18.29 [0.00] 1.67 [0.23], 1.67 [0.23] 8.03 [0.02], 8.03 [0.02] 

Linear AR 3 0.033 11.92 [0.00], 9.76 [0.00], 
9.76 [0.00] 

3.85 [0.07], 3.85 [0.07], 
3.85 [0.07] 

7.42 [0.02], 7.42 [0.02], 
7.42 [0.02] 

Linear AR 4 0.025 7.00 [0.01], 9.14 [0.00], 
10.70 [0.00], 4.48 [0.05] 

0.27 [0.71], 0.27 [0.71], 
0.13 [1.00], 0.13 [1.00] 

0.60 [0.76], 0.60 [0.76], 
0.29 [0.95], 0.29 [0.95] 

STAR 1 0.10 28.75 [0.00] 10.17 [0.00] 37.48 [0.00] 
STAR 2 0.05 12.07 [0.00], 8.64 [0.00] 1.53 [0.27], 1.53 [0.27] 3.67 [0.17], 3.67 [0.17] 

STAR 3 0.033 4.57 [0.05], 3.27 [0.10], 
4.57 [0.05] 

9.03 [0.01], 9.03 [0.01], 
9.03 [0.01] 

9.03 [0.01], 9.03 [0.01], 
9.03 [0.01] 

STAR 4 0.025 1.29 [0.26], 3.57 [0.09], 
3.00 [0.09], 1.81 [0.25] 

7.40 [0.01], 7.40 [0.01], 
6.25 [0.03], 6.25 [0.03] 

8.72 [0.01], 8.72 [0.01], 
8.12 [0.02], 8.12 [0.02] 

Note:  Statistics appear for each of the h subgroups. The exact p-value appears in brackets. Bold values mean significant 
at the 0.10/h level, according to the exact p-value. Finally, 0.00 indicates less than < 0.005. 

a  Forecast horizon (in months). 
b  Pearson χ2 test statistic for the null hypothesis that the prediction intervals exhibit the correct unconditional 

coverage. 
c  Pearson χ2 test statistic for the null hypothesis that the “hits” relating to the prediction intervals are independent. 
d  Pearson χ2 test statistic for the null hypothesis that the prediction intervals exhibit the correct conditional 

coverage. 
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Table 7 Out-of-sample density forecast evaluation, linear AR and STAR models 
 
(1) 
Model 

(2) 
ha 

(3) 
0.10/h 

(4) 
KSb 

(5) 
DHc 

(6) 
LB, k=1d 

(7) 
LB, k=2d 

(8) 
LB, k=3d 

(9) 
LB, k=4d 

A. US, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 0.14 8.01 8.16 39.84 6.00 17.42 
Linear AR 2 0.05 0.21, 0.26 2.38, 4.30 4.77, 13.85 32.39, 25.71 9.31, 9.99 22.56, 19.52 

Linear AR 3 0.033 0.23, 0.25, 
0.29 

3.44, 3.40, 
0.65 

6.10, 9.60, 
5.92 

23.43, 21.48, 
12.55 

8.17, 11.82, 
4.33 

16.57, 
14.24, 7.22 

Linear AR 4 0.025 0.27, 0.24, 
0.28, 0.34 

1.28, 4.78, 
3.44, 0.50 

8.39, 8.09, 
2.27, 11.15 

12.33, 16.93, 
13.28, 16.68 

7.05, 7.59, 
2.69, 7.41 

7.57, 12.00, 
8.36, 10.68 

STAR 1 0.10 0.09 4.55 8.91 32.92 5.85 11.81 
STAR 2 0.05 0.15, 0.18 2.87, 5.38 7.63, 13.69 27.31, 24.14 11.48, 10.00 15.59, 18.54 

STAR 3 0.033 0.20, 0.17, 
0.25 

6.32, 4.03, 
1.73 

7.87, 11.29, 
7.09 

21.30, 17.51, 
11.19 

8.39, 11.79, 
4.61 

15.39, 
12.03, 5.22 

STAR 4 0.025 0.20, 0.21, 
0.20, 0.28 

3.65, 4.16, 
5.09, 7.11 

9.16, 8.72, 
3.04, 10.85 

11.16, 15.63, 
13.01, 14.71 

7.59, 6.63, 
3.30, 4.70 

7.72, 11.67, 
8.64, 6.54 

B. Northeast, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 0.10 10.96 0.55 44.25 0.91 22.58 
Linear AR 2 0.05 0.14, 0.17 1.03, 5.05 1.93, 0.06 32.51, 31.50 0.30, 0.02 23.76, 23.36 

Linear AR 3 0.033 0.14, 0.12, 
0.20 

7.18, 
10.37, 3.39 

0.01, 0.04, 
0.01 

10.90,10.52, 
16.48 

0.00, 0.82, 
1.27 

4.66, 5.46, 
10.32 

Linear AR 4 0.025 0.17, 0.21, 
0.15, 0.25 

3.36, 7.18, 
7.33, 8.00 

2.07, 2.48, 
2.53, 0.04 

9.06, 9.73, 
5.09, 22.73 

0.89, 1.20, 
1.58, 0.26 

4.15, 5.52, 
1.28, 18.06 

STAR 1 0.10 0.06 11.83 0.70 38.24 1.07 17.09 
STAR 2 0.05 0.09, 0.13 4.51, 6.94 1.44, 0.03 29.42, 28.52 0.03, 0.18 19.01, 20.11 

STAR 3 0.033 0.15, 0.10, 
0.15 

10.63, 
7.16, 1.53 

0.02, 0.14, 
0.07 

8.84, 8.62, 
14.07 

0.09, 1.46, 
1.82 

3.19, 4.18, 
7.60 

STAR 4 0.025 0.13, 0.18, 
0.14, 0.22 

7.12, 5.58, 
3.00, 1.91 

1.83, 2.05, 
2.28, 0.01 

7.68, 8.65, 
3.36, 22.29 

0.37, 0.25, 
0.82, 0.03 

3.10, 4.96, 
0.50, 17.21 

C. Midwest, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 0.18, 3.84, 0.09, 59.79, 0.82, 33.93 
Linear AR 2 0.05 0.24, 0.24, 1.79, 2.41, 0.03, 3.37, 22.49, 20.02, 0.05, 3.17, 11.25, 8.36 

Linear AR 3 0.033 0.26, 0.24, 
0.25, 

3.55, 1.55, 
4.91, 

0.20, 7.36, 
0.01, 

6.21, 25.53, 
18.90, 

0.22, 7.86, 
0.09, 

0.47, 18.29, 
10.63 

Linear AR 4 0.025 0.24, 0.27, 
0.28, 0.30, 

9.84, 0.72, 
3.41, 1.75, 

1.17, 0.90, 
0.12, 0.53, 

14.86, 10.18, 
15.22, 21.02, 

2.73, 1.25, 
0.42, 0.13, 

10.97, 4.55, 
8.69, 15.69 

STAR 1 0.10 0.13, 5.83 0.20 53.02 0.97, 28.53 
STAR 2 0.05 0.21, 0.21, 4.15, 1.68 0.04, 3.63, 21.53, 18.82 0.05, 3.06, 11.34, 7.88 

STAR 3 0.033 0.23, 0.21, 
0.23 

3.58, 3.07, 
3.38 

0.16, 7.48, 
0.03 

6.01, 23.83, 
17.35 

0.20, 7.18, 
0.23 

0.49, 15.74, 
8.51 

STAR 4 0.025 0.22, 0.26, 
0.26, 0.27, 

3.38, 4.64, 
4.70, 0.65 

1.35, 1.03, 
0.12, 0.49 

14.14, 9.86, 
13.86, 20.44 

3.25, 1.24, 
0.29, 0.07, 

9.75, 4.37, 
7.19, 14.27 

 



48 
 

Table 7 Out-of-sample density forecast evaluation, linear AR and STAR models 
(continued) 

 
(1) 
Model 

(2) 
ha 

(3) 
0.10/h 

(4) 
KSb 

(5) 
DHc 

(6) 
LB, k=1d 

(7) 
LB, k=2d 

(8) 
LB, k=3d 

(9) 
LB, k=4d 

D. South, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 0.13 48.33 1.20 28.30 0.16 8.21 
Linear AR 2 0.05 0.17, 0.19 22.28,13.03 0.03, 4.66 22.50, 30.64 0.45, 6.26 8.71, 21.08 

Linear AR 3 0.033 0.21, 0.26, 
0.24 

10.33, 9.05, 
5.67 

0.36, 0.91, 
0.13 

16.79, 16.30, 
11.05, 

0.00, 0.72, 
0.00 

12.92, 5.90, 
1.68 

Linear AR 4 0.025 0.32, 0.24, 
0.29, 0.26, 

2.92, 3.62, 
3.53, 1.81, 

0.91, 2.29, 
0.30, 1.34, 

11.36, 17.27, 
10.90, 10.26, 

1.22, 2.57, 
0.27, 1.85 

2.53, 11.32, 
3.90, 5.73 

STAR 1 0.10 0.11, 12.96 1.22 24.15 0.00, 8.34 
STAR 2 0.05 0.15, 0.17, 3.57, 5.43 0.03, 5.00 21.73, 29.75 0.46, 6.73 8.17, 19.45 

STAR 3 0.033 0.18, 0.23, 
0.21 

4.30, 6.01, 
5.21 

0.28, 1.06, 
0.20 

16.15, 15.59, 
10.25, 

0.08, 0.61, 
0.01 

12.21, 4.93, 
1.41 

STAR 4 0.025 0.28, 0.21, 
0.25, 0.23 

5.93, 3.22, 
2.14, 9.19 

0.77, 2.28, 
0.39, 1.72 

9.59, 16.53, 
9.70, 9.95 

0.69, 3.17, 
0.32, 2.63 

1.69, 10.30, 
2.90, 6.10 

E. West, 2001:1-2010:5 out of sample period 
Linear AR 1 0.10 0.16 5.17 5.02 52.77 5.01 37.17 
Linear AR 2 0.05 0.22, 0.20 6.06, 1.04 5.07, 7.79 24.71, 30.47 4.10, 9.36 11.39, 20.83 

Linear AR 3 0.033 0.22, 0.26, 
0.28 

1.26, 0.63, 
1.41 

2.55,12.43, 
3.37, 

20.14, 23.66, 
20.16 

4.09, 11.03, 
2.15 

10.82, 
16.87, 9.77 

Linear AR 4 0.025 0.26, 0.27, 
0.30, 0.29, 

0.13, 0.17, 
2.90, 2.39, 

7.21,12.68, 
7.66, 6.82, 

17.98, 18.51, 
16.16, 16.22 

10.46, 9.03, 
4.45, 4.99 

15.31, 
11.66, 9.86, 

 STAR 1 0.10 0.13 3.89 5.31 49.99 6.40 34.09 
STAR 2 0.05 0.19, 0.18 3.72, 1.07 5.37, 8.05 23.33, 28.38 3.91, 9.28 10.47, 18.03 

STAR 3 0.033 0.20, 0.24, 
0.27 

1.63, 0.62, 
2.19 

3.10, 2.77, 
3.57 

18.42, 22.36, 
18.63 

4.57, 10.99, 
2.22 

10.02,15.24, 
8.62, 

STAR 4 0.025 0.24, 0.24, 
0.28, 0.26 

0.90, 0.29, 
4.13, 5.33 

7.90,12.70, 
7.70, 6.86 

17.68, 17.28, 
14.89, 16.05 

11.05, 8.45, 
4.09, 4.75 

14.64,10.60, 
7.93, 11.91 

Note: Statistics appear for each of the h subgroups. Bold statistics indicate significance at the 0.10/h level. Finally, 0.00 
indicates less than 0.005. 

a  Forecast horizon (in months).  
b  Kolmogorov–Smirnov test statistic for the null hypothesis that ~ (0,1)tz U .  
c  Doornik and Hansen (1994) test statistic for the null hypothesis that ~ (0,1)tz N . 
d  Ljung–Box test statistic for the null hypothesis of no first-order autocorrelation in ( ) , 1,  ..., 4k

tz z k− = . 
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Table 8 In-sample comparison of conditional densities corresponding to 
fitted STAR and linear AR models 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
  Block bootstrap TZ critical values  Block bootstrap TR Z− critical 

values 
Segment TZ a 10% 5% 1% TR Z− b 10% 5% 1% 
US 

0.0201 0.0364 0.0415 0.0502 0.0000 0.0001 0.0001 0.0002 
Northeast 

0.0319 0.0491 0.0547 0.0660 0.0085 0.0131 0.0160 0.0214 
Midwest 

0.0169 0.0272 0.0295 0.0344 0.0000 0.0000 0.0001 0.0001 
South 

0.0148 0.0198 0.0230 0.0301 0.0001 0.0001 0.0002 0.0003 
West 

0.0158 0.0325 0.0396 0.0631 0.0034 0.0085 0.0111 0.0246 
Notes: Bolded bootstrapped critical values indicate statistical significance for the test statistic at the corresponding 

significance level. Bootstrapped critical values are obtained using 2000 block bootstrap simulations. 
a  The Corradi and Swanson (2003) test statistic for the null hypothesis that the conditional densities 

corresponding to the STAR and linear AR models give equal accuracy relative to the true conditional 
density against the alternative hypothesis that the conditional density corresponding to the STAR model 
proves more accurate than the conditional density corresponding to the linear AR model.  

b  The Corradi and Swanson (2003) test statistic for the null hypothesis that the conditional densities 
corresponding to the STAR and linear AR models give equal accuracy relative to the true conditional 
density against the alternative hypothesis that the conditional density corresponding to the STAR model 
proves more accurate than the conditional density corresponding to the linear AR model for values of qt in 
the upper and lower quartiles of the in-sample observations. 

 
 
 



50 
 

 

 
Figure 1. Median Home Price in US and the Four Regions, 1968:1–2012:6. The figure plots median home prices in dollars. 
All series are seasonally adjusted by the authors using X-12 filter. Source: National Association of Realtors. 
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Figure 2. Seasonal first differences of logarithm of median home prices, 1969:1-2012:6. The figure plots 

12 12log log logt t ttr P P P−= ∆ = − , where Pt is the median home price. The data corresponds to annual growth rate of median 
home prices, which were actually analyzed in the paper. 
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Figure 3. Scatterplot of annual growth rate of home price rt and switch variable rt-d of the estimated STAR model. Dashed 
straight line is the conditional expectation function of the fitted linear AR(p). Solid line is the conditional expectation 
function of the fitted STAR model, which is obtained by 60000 bootstrap simulations of the fitted model and estimated 
using Nadaraya-Watson kernel regression. The kernel regression bandwidth is chosen using the least-squares cross 
validation and a second order Gaussian kernel is used. 
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Figure 4. Kernel density estimate of the conditional expectation function of the fitted STAR and the switch variable 
rt-d. The conditional expectation function of the fitted STAR model and the kernel density are obtained by 60000 
bootstrap simulations of the fitted model and estimated using Nadaraya-Watson kernel estimator. The kernel 
regression bandwidth is chosen using the least-squares cross validation and a second order Gaussian kernel is used. 
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Figure 5. Point Forecast of the annual growth rate of home price rt from the estimated linear AR(p) models for the 
period 2010:6-2012:6 and 50 to 95 percent interval forecasts. Dashed lines show the dynamic 25-step forecasts and 
solid lines show the actual data over the 2009:5-2012:6. 
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Figure 6. Point Forecast of the annual growth rate of home price rt from the estimated nonlinear AR models for the 
period 2010:6-2012:6 and 50 to 95 percent interval forecasts. Dashed lines show the dynamic 25-step forecasts and 
solid lines show the actual data over the 2009:5-2012:6. Each point forecast is obtained by 2000 bootstrap and an 
additional 2000 bootstrap simulations are used to obtain interval forecast for each time point. The interval forecasts 
are calculated using highest density region estimator of Hyndman (1996). 
 


