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Abstract  
 
One characteristic of many macroeconomic and financial time series is their asymmetric 

behaviour during different phases of a business cycle. Oil price shocks have been amongst those 

economic variables that have been identified in theoretical and empirical literature to predict the 

phases of business cycles. However, the role of oil price shocks to determine business cycle 

fluctuations has received less attention in emerging and developing economies. The aim of this 

study is to investigate the role of oil price shocks in predicting the phases of the South African 

business cycle associated with higher and lower growth regimes. By adopting a regime dependent 

analysis, we investigate the impact of oil price shocks under two phases of the business cycle, 

namely high and low growth regimes. As a net importer of oil, South Africa is expected to be 

vulnerable to oil price shocks irrespective of the phase of the business cycle. Using a Bayesian 

Markov switching vector autoregressive (MS-VAR) model and data for the period 1960Q2 to 

2013Q3, we found the oil price to have predictive content for real output growth under the low 

growth regime. The results also show the low growth state to be shorter-lived compared to the 

higher growth state.   
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1. Introduction  
 

The role of oil price shocks on macroeconomics variables emerged after the 1973 and 1979 oil 

price shocks that coincided with a period of high inflation, high unemployment and decelerating 

economic activities in a number of countries. Since then, macroeconomists have focused their 

attention on the macroeconomic consequences of oil price shocks. In economics, a number of 

transmission channels exist through which oil price affects output. From the supply side, an 

increase in the oil price will lead to higher input costs which will increase the cost of production 

of goods and services. The production volume may thus be affected, as firms may find it difficult 

in the short run to re-allocate resources in order to produce the same volume of goods and 

services. The magnitude of the impact of oil price shocks to the aggregate output will however 

depend on the energy intensity in the production process. On the demand side, an increase in 

the oil price will put pressure on the price level. In order to control the inflation, the central bank 

might increase the interest rate, which could lead to a reduction in investment, and hence a 

decline in output. Moreover, the increase in oil price affects the individual consumer as it will 

reduce the amount of goods and services that could be purchased with the consumer’s existing 

level of income.  

 A number of studies have been conducted to investigate the linear relationship between 

oil price shocks and economic activities; using Sims’ (1980) linear VAR model with the aid of 

impulse response analysis. In most instances, research findings reveal the existence of a negative 

relationship between oil prices shocks and economic activities; however the strength of the 

relationship in different countries are likely to depend on the energy intensity, structure of the 

economy and the sample period (Abeysinghe 2001; Nkomo 2006; and Tang, et al. 2010). Despite 

the evidence of an overall negative relationship between oil price and economic activity observed 

in a number of studies, when the oil price decreased significantly, by as much as 50 per cent in 

real terms, during the first half of 1986, for a number of countries it was found that the decline 

in oil price did not promote economic growth, giving rise to a renewed debate on oil price 

effects on economic activity. A number of studies consequently focused on the possibility of a 

nonlinear and asymmetric relationship between oil price and economic activity. 

 Mork (1989) in his study on the role of oil price shocks on economic activity, finds oil 

price increases to affect economic growth negatively while  a decline in oil price does not have 

the opposite effect. Where the coefficients on oil price increases turn out to be negative and 

highly significant, the coefficients on price declines tend to be positive, but small and not 

statistically significant. Hamilton (1988) provides a theoretical framework to explain the source 
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of asymmetry in the relationship between oil price and real output. The author observes that 

when the growth rate of oil price increases, durable consumption growth drops, as consumers 

choose to postpone their purchases. But when the growth rate of the price of oil slows down, 

durable consumption growth does not necessarily rise. Hooker (1996) reports an insignificant 

relationship between oil price shocks and US macroeconomic variables in the period following 

the 1973 oil price shock. Herrera, et al. (2011), investigate the presence of a linear relationship 

between an oil price shock and economic activity. Using industrial production as a measure of 

economic activity, the results fail to show any asymmetric relationship between oil price and 

industrial production at the aggregated level.  Using data on industrial production at a 

disaggregated level however, the authors find strong evidence of a nonlinear and asymmetric 

relationship between oil price and output for industries that are energy intensive or produce 

goods that are energy intensive in use. Blanchard and Gali (2007) find that despite similar energy 

intensity levels for the four oil price shocks identified in their study, the effect of these shocks on 

growth and inflation has been different for different shocks. The 1970s shocks were 

characterised by higher inflation and lower growth while in the more recent period lower 

inflation and increasing growth are observed despite the on-going increase in energy 

consumption over time. The authors linked the recent dynamics of oil shocks on 

macroeconomic variables to a better monetary policy, a decrease in wage rigidities and a 

reduction of oil usage in production processes.  Given the findings in a number of studies of a 

weakened relationship between oil shocks and economic activity observed for recent periods, 

and the fact that the effect of oil price increases seem to matter in a nonlinear setting, studies 

that use linear models may be incapable to capture the dynamics between oil prices shocks and 

economic activities accurately. Another interesting observation arises in the study by Kilian 

(2009), where the author argues that the impact of oil shocks on macroeconomic variables 

depends on the source of the oil shock. In his study, he considers oil supply shocks, global 

demand shocks and oil demand shocks. One of the conclusions of his analysis is that emphasis 

on oil supply shocks which is exogenous in explaining the impact of oil price shocks on 

macroeconomic variables might be misleading. In South Africa, a recent study by Chisadza, et al. 

(2013) investigates the impact of oil shocks on the South African economy using a sign 

restriction-based structural vector autoregressive (VAR) model. Considering oil supply shocks, 

oil demand shocks driven by global economic activity, and oil-specific demand shocks, the 

authors found output to be affected positively by both oil demand and oil-specific demand 

shocks, while oil supply shock has no significant effect on output. Aye et al., (2014) analyzes the 

impact of oil price uncertainty on manufacturing production of South Africa using a bivariate 
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GARCH-in-mean-VAR model, and shows oil price uncertainty to have a significant negative 

impact on manufacturing production. In addition, the paper also detects that the response of 

manufacturing production to positive and negative shocks are asymmetric.  

Oil price shocks have also been identified in a number of studies as one of the 

contributing factors influencing the state of the business cycle. For the US economy, Hamilton 

(1983, 1996 and 2005), finds that an increase in the oil price has preceded almost all the 

recessions in the US, which finding has attracted a number of researchers to investigate the role 

of an oil price shock in predicting business cycle fluctuations. Raymond and Rich (1997) use  a 

generalized Markov switching (MS) model, where net oil price increase is included in the model 

to examine its contribution to post-war US business cycle fluctuations. The authors confirm the 

oil price to be a contributing factor to phases of low output. However, the study finds oil prices 

not to predict the transition from the low growth to high growth phases of the business cycle. 

Moreover, the authors are of the opinion that the Hamilton (1983) study overstates the role of 

oil price shocks in predicting a recession. De Miguel, et al. (2003), employ a standard dynamic 

stochastic general equilibrium (DSGE) model for the small open Spanish economy, and include 

the oil price shock in the model as an exogenous technological shock and as the only source of 

fluctuation in economic activity. The study then analyses the effects of the shock on business 

cycle fluctuations and on welfare. Their model results are in line with the business cycle path of 

the Spanish economy; specifically, a negative impact of an increase in relative price of oil on 

welfare was identified. Schmidt and Zimmermann (2005) find the effect of an oil shock on 

German business cycle fluctuation to be limited and declining over time when the analysis is split 

into sub-periods of 1970-1986 and 1997-2002. The limited effect of oil price changes on the 

business cycle is also reported on in the study by Kim and Loungani (1992). Clements and 

Krolzig (2002) use a three-state Markov switching VAR (MS-VAR) to test whether oil prices can 

explain business cycle asymmetries. The authors find that oil prices movements cannot 

adequately explain business cycle asymmetries. Using a Markov switching analysis for the G-7 

countries, Cologni and Manera (2006) investigate the asymmetric effect of an oil shock on 

different phases of the business cycle for each of the G-7 countries; and  find regime dependent 

models to better capture the output growth process. Recently, Engemann, et al. (2010), using a 

Markov switching model, investigated whether oil price shocks significantly increase the 

probability of a recession in a number of countries and found oil price to affect the likelihood of 

moving into recession.  

Despite significant evidence of the role of oil price shocks in explaining business cycle 

movement for the US and other developed countries, a limited number of studies have been 
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conducted for developing countries to investigate the transmission of oil price shocks to 

economic activity. The effect of oil price shocks on macroeconomic variables in the case of 

developing economics also vary significantly across countries, due to the disparity in the degree 

of energy intensity of the economy, the size of the shock and economic structure of the country. 

South Africa as a net oil importer, consumes the second-largest amount of petroleum in Africa, 

behind Liberia; and 95 per cent of its crude oil needs are met through imports. South Africa 

imports crude oil mostly from OPEC countries in the Middle East and West Africa, with 

roughly half of imported oil coming from Saudi Arabia in 2013. Given the importance of oil in 

South African economy, the present paper investigates the impact of oil price shocks on South 

African business cycle fluctuation using a two-state Bayesian Markov switching VAR, the 

asymmetric response of oil shocks during high and low growth phases of the business cycle will 

be analysed through state-dependent impulse responses.  

The Markov switching model used in this study has been widely used in empirical literature 

to capture nonlinearities and asymmetry among economic variables (Hamilton 1994; Krolzig 

2001; and Krolzig and Clements 2002). First, the model allows us to classify regimes as 

depending on the parameter switches in the full sample and, therefore, it is possible to detect 

changes in dynamic interactions between the variables. Second, this model allows for many 

possible changes in the dynamic interactions between the variables at unknown periods. Third, it 

is possible to make probabilistic inference about the dates at which a change in regime occurred. 

To date, no study to our knowledge has been undertaken to investigate the effect of oil price 

shocks on South African business cycle fluctuations, using a MS-VAR model.1  

The rest of the sections are outlined as follows: Section 2 discusses the methodology used 

in this study, Section 3 presents data, section 4 discusses the empirical findings, and Section 5 

concludes. 

 
2. Methodology 
 

It is commonly accepted that one of the most important challenges facing macroeconometric 

time series models is structural change or regime shift (see Granger, 1996). Indeed, the survey 

papers by Hansen (2001) or Perron (2006) affirm that econometric applications should distinctly 

consider regime shifts.  

Econometricians have recently introduced new models that can sufficiently deal with 

                                                        
1 However, there does exist recent studies that have analyzed the (symmetric and asymmetric) impact of oil price 
shocks on inflation (Ajmi et al., 2014; Gupta and Kanda, 2014) and interest rates (Aye et al., forthcoming) for South 
Africa, in both time and frequency domains. 
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certain types of structural changes. One of the appealing methodologies that can deal with 

structural breaks is the Markov switching (MS) approach proposed by Hamilton (1990) and later 

extended to multivariate time series models by Krolzig (1997). The initial work by Hamilton 

(1990) studies univariate Markov switching autoregression (MS-AR) while a multivariate 

extension to Markov switching vector autoregression (MS-VAR) is introduced in Krolzig (1997). 

The MS models fall within the category of nonlinear time series models which is generated by 

nonlinear dynamic properties, such as high moment structures, time varying, asymmetric cycles, 

and jumps or breaks in a time series (Fan and Yao, 2003). The long time span of our data 

includes several influential events, such as the first and second OPEC oil price shocks in 1973 

and 1979, respectively, the debt-standstill agreement and economic sanctions imposed against 

South Africa in 1985 as a consequence of its Apartheid regime, the relaxation of trade sanctions 

again and the transition to a democracy in 1994, the 1997/98 East Asian crisis, and more 

recently the global recession of 2008. The data also covers quite a number of influential business 

cycles. MS models are found to fit well to such time series data with business cycles features and 

regime shifts.  

A number of studies successfully used MS models to analyse aggregate output and 

business cycles (e.g., Hamilton 1989; Diebold, et al. 1994; Durland and McCurdy 1994; Filardo 

1994, Ghysels 1994; Kim and Yoo 1995; Filardo and Gordon 1998; and Krolzig and Clements 

2002). Following these studies, we thus consider the MS-VAR model, which, with its rich 

structure, accommodates the features of oil price and output data we examine. The model choice 

unlike other traditional models not only efficiently captures the dynamics of the process, but also 

has a more appealing structural form and provides economically intuitive results.  

The methodology we adopt is based on a vector autoregressive (VAR) model with time-

varying parameters where, given our objectives, the parameter time-variation directly reflects 

regime switching. In this approach, changes in the regimes are treated as random events 

governed by an exogenous Markov process, leading to the MS-VAR model. The state of the 

economy is determined by a latent Markov process, with probability of the latent state process 

taking a certain value based on the sample information. In this model, inferences about the 

regimes can be made on the basis of the estimated probability, which is the probability of each 

observation in the sample coming from a particular regime. The MS-VAR model we use to 

analyse the time varying dynamic relationship between the quarterly real spot crude oil price and 

real GDP is an extension of the class of autoregressive models studied in Hamilton (1990) and 

Krishnamurthy and Rydén (1998). It also allows for asymmetric (regime dependent) inference 

for impulse response analysis. The structure of the MS-VAR model we use is based on the 
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model studied in Krolzig (1997) and Krolzig and Clements (2002). Our estimation approach is 

based on the Bayesian Markov-chain Monte Carlo (MCMC) integration method of Gibbs 

sampling, which allows us to obtain confidence intervals for the impulse response functions of 

the MS-VAR model. 

To be concrete, let Pt
 and Qt

 denote the real crude oil price and real output2, respectively. 

Define the time-series vector  up to and including period t as Xt = [Pt ,Qt ′]   and let 

, where p is a nonnegative integer. For 

the vector valued time series  of random variables, assume that a density (probability) 

function  exists for each t ∈ {1, 2,…,T}. The parameters and the parameter space 

are denoted by θ and Θ, respectively. The true value of θ is denoted by θ0 ∈ Θ. Let the stochastic 

variable  follow a Markov process (chain) with q states. In the MS-VAR model, 

the latent state variable  determines the probability of a given state in the economy at any 

point in time. Taking into account that the oil price and output series are not cointegrated and 

their dynamic interactions are likely to have time-varying parameters, our analysis is based on the 

following MS-VAR model: 

 
  
∆X

t
= µ

St

+ Γ
St

(k )

k=1

p−1

∑ ∆X
t−k

+ ε
t
, t = 1,2,...,T

    
(1) 

where p is the order of the MS-VAR model, [ | ~ (0, )]t t stS Nε Ω , and  is a (2 × 2)  positive 

definite covariance matrix. The random state or regime variable , conditional on , is 

unobserved, independent of past Xs, and assumed to follow a q-state Markov process. In other 

words, Pr[St = j St−1 = i ,St−2 = k2,",ℑt−1] = Pr[St = j St−1 = i ,ℑt−1] = pij
, for all t and , regimes 

i, j = 1, 2, ..., q, and l ≥ 2. More precisely follows a q state Markov process with transition 

probability matrix given by 

  .    (2) 

Thus, pij is the probability of being in regime j at time t, given that the economy was in 

regime i at time (t-1), where i and j take possible values in {1, 2,…, q}. The MS-VAR specified as 

above allows all parameters to depend on the latent regime or state variable St, that is all 

                                                        
2 The real crude oil price and real GDP series we analyse are both nonstationary time series as shown by the unit 
root tests reported on in Section 3. Moreover, the series also do not maintain a long-run relationship as they are not 
cointegrated, leading to a MS-VAR model in first differences.  

Xt

ℑt = {Xτ τ = t,t −1,...,1− p) ℑt = {Xτ τ = t,t −1,...,1− p)

Xt

f (Xt ℑt−1,θ )

St ∈{1,2,...,q}

St

ΩSt

St St−1

kl

St
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parameters of the model including the variance matrix . 

In our particular application, the maintained hypothesis is that q=2, that is, two states or 

regimes for each variable are sufficient to describe the dynamic interactions between the oil price 

and output. This is consistent with crises-recovery (recession-expansion) cycles observed in 

many macroeconomic time series. A large number of studies showed that the two regime MS 

model is rich enough to capture the regime switching behaviour in macroeconomic time series 

(e.g., Hamilton 1989; Diebold, et al. 1994; Durland and McCurdy 1994; Filardo 1994, Ghysels 

1994; Kim and Yoo 1995; Filardo and Gordon 1998; and Krolzig and Clements 2002).  

The MS-VAR model in Equations (1)-(2) has some appealing properties for analysing the 

dynamic interactions of the variables. First, it allows us to classify regimes as depending on the 

parameter switches in the full sample and, therefore, it is possible to detect changes in dynamic 

interactions between the variables. Second, this model allows for many possible changes in the 

dynamic interactions between the variables at unknown periods. Third, it is possible to make 

probabilistic inference about the dates at which a change in regime occurred. We will be able to 

evaluate the extent of whether a change in the regime has actually occurred, and also identify the 

dates of the regime changes. Finally, this model also allows us to derive regime dependent 

impulse response functions to summarize whether the impact of the oil price on the GDP varies 

with regimes. 

The empirical procedure for building a suitable MS-VAR models starts with identifying a 

possible set of models to consider. We determine the order p of the MS-VAR model using the 

Bayesian information Criterion (BIC) in a linear VAR(p) model. The MS-VAR model 

specifications may differ in terms of regime numbers (q) and the variance matrix specification. 

We only consider both regime-dependent (heteroscedastic) variance models, because both the oil 

price and output series span a number of periods where volatilities vary significantly. Once a 

specific MS-VAR model is identified, we next test for the presence of nonlinearities in the data. 

When testing the MS-VAR model against the linear VAR alternative, we follow Ang and Bekaert 

(2002) and use the likelihood-ratio statistic (LR), which is approximately χ2(q) distributed, where 

q equals the number of restrictions plus the nuisance parameters (i.e., free transition 

probabilities) that are not identified under the null. We use p-values based on the conventional χ2 

distribution with q degrees of freedom and also for the approximate upper bound for the 

significance level of the LR statistic as derived by Davies (1987). Once we establish nonlinearity, 

we can choose the number of regimes and the type of the MS model based on both the 

ΩSt
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likelihood-ratio statistic and the Akaike information Criterion (AIC).3  

There are three commonly used methods used for estimating the parameters of MS 

models. Although the simplest method of estimation is maximum likelihood (ML), it may be 

computationally demanding and may have slow convergence. 4  The ML method faces two 

important practical difficulties. First, a global maximum of the likelihood may be difficult to 

locate. Second, the likelihood function for the important class of mixtures of normal 

distributions is not bounded and the ML estimator does not exist for the global maximum. 

Second, and more commonly used, the method of estimation for MS models is the expectation 

maximization (EM) algorithm (Dempster, et al. 1977; Lindgren 1978; Hamilton 1990, 1994). 

Assuming that the conditional distribution of Xt given { } is normal, the 

likelihood function is numerically approximated using the EM algorithm in two steps. In the first 

step, given the current parameter estimates and the data, the conditional expectation of log 

likelihood is computed (E-step), and in the second step parameters that maximize the complete-

data log likelihood function computed (M-step). The EM algorithm may have slow convergence 

and also standard errors of the parameters cannot be directly obtained from the EM algorithm. 

A third method is the Bayesian MCMC parameter estimation based on Gibbs sampling. The ML 

and EM methods usually fail for certain types of models since it may not be possible to compute 

the full vector of likelihoods for each regime for each period. The MCMC works only with one 

sample path for the regimes rather than a weighted average of sample paths over all regimes, and 

therefore, avoids the problem faced by the ML and EM methods.  

The MCMC indeed treats the regimes as a distinct set of parameters. Our MCMC 

implementation is based on the following steps5: 

i. Draw the model parameters given the regimes. In our case, transition probabilities do 

not enter this step. 

ii. Draw the regimes given the transition probabilities and model parameters.  

iii. Draw the transition probabilities given the regimes. In our case, model parameters do 

not enter this step.    

In the next step, we first draw ΩSt
given regimes, P, and ηSt

= (β,µSt
,αSt

,ΓSt
′)  using a 

hierarchical prior. Our implementation first draws a common covariance matrix from the 

Wishart distribution given the inverse of the regime specific covariances; and second we draw 

                                                        
3 Krolzig (1997) and Psaradakis and Spagnolo (2003) suggest selecting the number of regimes and the MS model 
using the AIC, and using a Monte Carlo experiment Psaradakis and Spagnolo (2003) show that the AIC generally 
yields better results in selecting the correct model. 
4 An excellent review of the ML estimation of the MS models is provided by Redner and Walker (1984). 
5 See Fruehwirth-Schnatter (2006) for the details of the MCMC estimation of the MS models. 

  
ℑ

t
,S

t
,S

t−1
,...,S

0
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the regime specific covariances from the inverse Wishart distribution given the common 

covariance. The degrees of freedom priors for Wishart and inverse Wishart distributions are 

both equal to 4. Second, we use a flat prior and draw ηSt
= (β,µSt

,αSt
,ΓSt

′)  given regimes, P, 

and ΩSt
 from a multivariate Normal distribution with 0 mean. In the second step, we draw 

regimes St given ηSt
= (β,µSt

,αSt
,ΓSt

′) , P, and ΩSt
. This is obtained from the Bayes formula, 

where the relative probability of regime i at time t is given as the product of the unconditional 

regime probability times the likelihood of regime i at time t. Regimes are drawn as a random 

index from {1,…,q} given relative probability weights. Indeed, we use the Forward Filter-

Backwards Sampling (FFBS) (also called Multi Move Sampling) algorithm described in Chib 

(1996) to draw the regimes.  In the second step of the MCMC method we reject any draw, if less 

than 5% of the observations fall in any of the regimes. Finally, in the third step, unconditional 

probabilities P given the regimes are drawn from a Dirichlet distribution. We set the priors for 

the Dirichlet distribution as 80% probability of staying in the same regime and 20% probability 

of switching to the other regime. We perform the MCMC integration with 50,000 posterior 

draws with a 20,000 burn-in draws.   

Since its first introduction in the influential work of Sims (1980), a natural tool to analyse 

the dynamic interaction between the oil price variable and output is the impulse response 

function (IRF). IRF analysis studies how a given magnitude of a shock in one of the variables 

propagates to all variables in the system over time, say for h=1,2,…, H steps after the shock hits 

the system. Computing multi-step IRFs from MS-VAR models as well as from all nonlinear time 

series models prove complicated because no ordinary method of computing the future path of 

the regime process exists. An ideal IRF analysis requires that we know the future path of the 

regime process, since the impulses depend on the regime of the system in every time period. 

Ideally, the IRFs of the MS-VAR model should integrate the regime history into the 

propagation period, which is not easily resolved. Two approaches arose in the literature as a 

work-around to the history dependence of the IRS in the MS models. Ehrmann et al. (2003) 

suggested assuming that regimes do not switch beyond the shock horizon, leading to regime-

dependent IRFs (RDIRFs).  On the other hand, Krolzig (2006) acknowledges the history 

dependence and allows the regime process to influence the propagation of the shocks for the 

period of interest, h=1, 2, … H. In Krolzig’s approach conditional probabilities of future 

regimes, St+h
, are obtained given the regime St

 and the transition probabilities, P.  

One major attraction of the RDIRF analysis is the possibility of determining the time 

variation in the responses of variables to a particular shock. The RDIRF traces the expected path 
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of the endogenous variable at time t+h after a shock of given size to the k-th initial disturbance at 

time t, conditioned on regime i. The k-dimensional response vectors ψki,1,…, ψki,h represents a 

prediction of the response of the endogenous variables. (Ehrmann, et al. 2003). The RDIRFs6  

can be defined as follows: 

            
ψ

ki,h
=

∂Et X
t+h

∂u
k,t St= ⋅⋅⋅=S

t+h
=i

 for h ≥ 0                                (3) 

where uk ,t  is the structural shock to the k-th variable. In general, the reduced form shocks ε t
 

will be correlated across the equations and ε k ,t  will not correspond to uk ,t
. This leads to the 

famous identification problem for which several solutions exist. We assume that the structural 

shocks are identified as ε t = FSt
ut

. To make structural inferences from the data, the structural 

disturbances and hence F must be identified.  In other words, sufficient restrictions are imposed 

on the parameter estimates in order to derive a separate structural form for each regime, from 

which RDIRFs are then computed.  As in a standard VAR measuring the impact of the oil prices 

on output, we order the output last and use the recursive identification scheme, made popular by 

Sims (1980). The recursive identification scheme is based on the Cholesky decomposition of the 

covariance matrix as ΩSt
= LSt

′LSt
 and identifying structural shocks from ut = FSt

−1ε t  with 

FSt
= LSt

.  

The RDIRF analysis, although significantly simplifies derivation and allows construction of 

confidence interval via bootstrap, it is not appropriate, if the regime switching is likely during 

propagation of shocks.  The solution of Krolzig (2006) is appealing, but it leaves out the 

construction of the confidence intervals. In our study, we combine RDIRF analysis with MCMC 

integration. Given our interest is whether the dynamic response of the output to oil price shocks 

depends on the state of the economy, such as the recession or recovery periods, assuming a 

given regime − regime switching does not take place during the shock propagation periods − and 

studying the propagation of the oil price shock in the future is appropriate for our purpose. 

Building on the Bayesian impulse responses for the linear VAR models, which are well covered 

in Ni, et al. (2007), we drive the posterior density of the RDIRFs from the Gibbs sampling. The 

simulations of the posteriors of the parameters jointly with the identification of the structural 

shocks via the Gibbs sampler directly yield the posterior densities of the RDIRFs. The 

confidence bands are obtained by the MCMC integration with Gibbs sampling of 50,000 

posterior draws with a burn-in of 20,000. 
                                                        
6 Refer to Ehrmann, et al. (2003) for details on characteristics and computation of the regime-dependent impulse 
responses. 
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3. Data   
 

In this study, we employ quarterly data for the period 1960Q1-2013Q3 for real GDP and real oil 

price. We make use of real gross domestic product (GDP) at market prices from the South 

African Reserve Bank, and to obtain quarterly real oil price in South African currency, we use the 

nominal Brent crude oil spot price from the US Department of Energy as the main source 

(DCOILBRENTEU, 1987Q3-2013Q4) but supplement it further back with data from Global 

Financial Data (GFD) (BRT-D, 1970Q1-1987Q2). Since the spread between Brent crude and the 

WTI oil price in early years of the sample appears very small, we use WTI's oil price data to 

supplement for the 1960s. Nominal oil price data are seasonally adjusted using the X-12 

procedure and converted into Rand values using the Rand/US$ exchange rate from GFD from 

1960Q1-2012Q3. Lastly, nominal values are deflated using CPI from the International Financial 

Statistics (IFS) of the International Monetary Fund (IMF) to obtain the real oil price. Figure 1 

shows the time series of the real Brent crude oil price in South African Rand, and the real gross 

domestic product. All values are expressed in natural logarithms. The sample period covers 

1960Q1 – 2013Q3. 

Different unit root tests were performed to investigate the univariate characteristics of 

both level variables. The set of formal unit root tests presented in Appendix A reveals that both 

variables are I(1), hence nonstationary in levels but stationary after first differencing. Given the 

nonstationarity of the log of real GDP and log of real oil price, in order to estimate the MS-VAR 

model, we make use of the growth of real GDP and growth of real oil price which are both 

stationary or I(0).  The sample period used to estimate the MS-VAR is 1960Q2 to 2013Q3.  

 
4. Empirical findings 
 

Before we start estimating our models, we first contemplate some preliminary descriptive 

statistic on quarterly real Brent crude oil spot price in South African Rand (LROILP), and the 

quarterly real GDP of South Africa (LRGDP). The graphic representations and summary 

statistics on both variables are presented in Figure 1 and Table 1, respectively.  
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Table 1. Descriptive statistics 

 LROILP LRGDP 

 Panel A: log levels 
Mean 5.164 13.79 
S.D. 0.685 0.424 
Min 3.803 12.838 
Max 6.566 14.506 
Skewness 0.07 -0.333 
Kurtosis -1.014 -0.534 
JB 9.053** 6.375** 
Q(1) 200.598*** 209.860*** 
Q(4) 702.204*** 797.611*** 
ARCH(1) 187.031*** 213.412*** 
ARCH(4) 184.044*** 210.654*** 

 Panel B: growth rates 
Mean 0.0126 0.0078 
S.D. 0.1458 0.0106 
Min -0.693 -0.0214 
Max 1.1244 0.0491 
Skewness 1.4458 0.1374 
Kurtosis 17.75 1.384 
JB 2947.0640*** 18.7960*** 
Q(1) 3.5380* 2.5189 
Q(4) 10.4034** 28.1647*** 
ARCH(1) 0.3341 12.9154*** 
ARCH(4) 0.5079 14.7426*** 

   N 215 215 
***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 

 

Given that we found both variables to be I(1), we proceed to investigate if there exists any long-

run relationship between the two variables under investigation. The results of the multivariate 

cointegration tests for the VAR(p) model of  variables LROILP and LRGDP are presented in 

Appendix A. The VAR order is selected based on minimum BIC and is 1. Two tests of 

cointegration by Johansen (1988, 1991) report maximal eigenvalue (λmax) and trace (λtrace) 

cointegration test results. Non-rejection of r=0 for the Johansen tests implies no cointegration. 

Using both trace and maximum eigenvalue, both tests fail to detect any long-run relationship 
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between the variables. Stock and Watson (1988) common trends testing confirms that the real oil 

prices and real GDP series are not cointegrated. Since Johansen cointegration tests fail to show 

any existence of a long-run relationship between real oil prices and real GDP, we then proceed 

our estimation using a Bayesian MS-VAR with 4 lags form 1960Q2 to 2013Q3 given that the 

growth rate of the series are stationary. Note that we opt for a two-state MS-VAR, and a linear 

VAR model is used as a benchmark for our analysis.    
Table 2 reports estimation results and model selection criteria for the MS-VAR model 

given by Equations (1)-(2). The lag order selected by the BIC is 1 for both linear VAR and MS-

VAR models. The MS-VAR model is estimated using the Bayesian Monte Carlo Markov Chain 

(MCMC) method where we utilize Gibbs sampling. The MCMC estimates are based on 20,000 

burn-in and 50,000 posterior draws. All reported estimates in Table 2 for the MS-VAR model are 

obtained from the Bayesian estimation. The likelihood ratio (LR) statistics tests the linear VAR 

model under the null against the alternative MS-VAR model. The test statistic is computed as the 

likelihood ratio (LR) test. The LR test is nonstandard since there are unidentified parameters 

under the null. The χ2 p-values (in square brackets) with degrees of freedom equal to the number 

of restrictions as well as the number of restrictions plus the numbers of parameters unidentified 

under the null are given. The LR test shows that the MS model is superior to the linear VAR 

model. The p-value of the Davies (1987) test is also given in square brackets and show strong 

rejection of linearity. Regime properties include ergodic probability of a regime (long-run average 

probabilities of the Markov process), where observations fall in a regime based on regime 

probabilities, and average duration of a regime.  Specifically, in our multivariate model regime 

probability is a function of past values of real GDP growth, past values of oil price changes as 

well as shifts in conditional variances and covariances.   

The results suggest two distinct regimes: regime 1, that appears to be associated with higher 

real economic growth rates in the South African economy, as well as less volatility in the oil 

market; and regime 2, marked by low and negative economic growth rates during periods of 

political and financial crisis as well as oil price shocks and higher oil price volatility. The 

probability of being in regime 1 at time t, given that the economy was in regime 1 at time (t-1) is 

0.9397, while the probability of being in regime 2 at time t, given that the economy was in regime 

2 at time (t-1) is 0.9160. These indicate that both regimes are persistent. Furthermore, the long-

run average probabilities of regimes 1 and 2 equal 0.58 and 0.42, respectively. That is, for the 

observations in our sample, we expect regime 1 (high growth-low oil price volatility) to occur on 

124 occasions, while we expect regime 2 (low and negative growth-higher oil price volatility) to 

occur on 89 occasions.   
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 Linking the high growth (low oil price volatility) and low growth (high oil price volatility 

and oil price shocks) regimes to actual business cycle upswings and downswings, it may be 

expected that lower growth-higher volatility regimes will also be associated with downswings and 

recessions. It is generally acknowledged in the literature (Du Plessis 2006) that the probability of 

a state of lower growth or a contractionary phase should be smaller than the probability of a high 

growth state, or expansionary phase, since recessions tend to be shorter-lived than expansions. 

Therefore, we could also expect to find fewer periods of lower growth. Our results support this 

fact, namely suggesting an average duration of the high growth regime of 16.6 quarters compared 

to the low growth regime that lasts on average for 11.9 quarters.   

 
Table 2. Estimation results for the MS-VAR model 
 

Model selection criteria 

MS(2)-VAR Linear VAR(1) 

Log likelihood 880.5350 781.5413 

AIC criterion -8.2348 -7.3927 

HQ criterion -8.2658 -7.4067 

BIC criterion -7.9149 -7.2488 

LR linearity test Statistic p-value 

173.53916 χ2(9) =[0.0000]*** 

χ2(11)=[0.0000]*** 

 

  

Davies=[0.0000]*** 

Transition probability matrix 

 

P =
0.9397 0.0603

0.0840 0.9160









      

        

  

 

    Regime properties 

Probability Observations Duration (Quarters ) 

Regime 1 0.5823 124 16.5915 

Regime 2 0.4177 89 11.8994 
***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 
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(MCMC) method where we utilise Gibbs sampling. The MCMC estimates are based on 20,000 

in and 50,000 posterior draws. The MCMC method uses the Forward Filter

Sampling (FFBS) algorithm (Multi-move sampling) described in Chib (1996) to sample

regimes. The smoothed probabilities in Figure 2 are means of the 50,000 posterior draws for 

each time period based on the FFBS algorithm. Shaded (blue) regions in Figure 2 correspond to 

the periods where smoothed probability of the low growth regime is at the maximum. 

We note that regime2 (low growth, high oil price volatility) occurs in the post 1973 and 

1979 periods, both periods marked by significant oil price increases due to OPEC countries’ 

oligopolistic approach to limit the extraction of oil and the Iranian revolution of 1979.  The 

impact of the oil price shocks on South African output growth during these two periods appear 

lived however, and it could be argued that a rise in the gold price during the 1970s 

r offsetting the impact of the oil price increases on output growth 

. A low growth regime also coincides with the political crisis in the South Africa 

during and post 1985 with the debt standstill agreement and economic and trade sanctions 
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imposed on the country.  During this period of economic isolation, the economy entered a 

rather prolonged recession, with negative growth rates recorded for several periods. The 

sanctions were only gradually lifted during the first half of the 1990s, starting with the release of 

Nelson Mandela in 1990 and finally completely reversed with the transition to a democracy in 

1994. The latter part of the 1980s and early 1990s were indeed marked by the longest downward 

phase in the South African business cycle, lasting 51 months, between March 1989 and May 

1993, once again with persistent negative growth rates in real economic output. This period also 

include the 1990 Iraq war oil shock.  It can be observed from Figure 2 that our analysis identifies 

this period as a low growth regime. The significant reduction in the oil price in 1986, namely by 

50 per cent during March 1986, could potentially be responsible for the brief interruption in the 

low growth regime following the oil price decrease, despite the on-going political crisis.  We 

enter another low growth regime during the late 1990s which lasts until the mid-2000s, a period 

characterised by increases in the global oil demand which led to increases in the oil price. Real 

economic growth rates recorded during this time are also lower than the preceding periods 

following the first few years of a democratic dispensation. This low growth period also include 

the East Asian crisis of 1998/99 and its evident impact on growth performance of developing 

economics world-wide. The final low growth regime suggested by our analysis commenced in 

2008, coinciding with the global financial crisis, and lasts for the remainder of the sample period 

under consideration. 

In Figures 4 and 5 in Appendix A, regime 2, is overlaid on real GDP growth rates and real 

oil price changes respectively. It is clear that our multivariate MS-VAR model identifies regime 2 

based on either occurrences of oil price shocks and oil price volatility, or periods of low and 

negative growth rates, or both of these. 

Figure 3 reports 1 to 20-step ahead impulse responses of real GDP growth to a 1 standard 

deviation shock in the real oil price growth. All impulses are based on Cholesky factor 

orthogonalization. Impulse responses are shown in solid and circle symbol lines. The dark grey 

regions around the impulse responses correspond to 95 percent confidence intervals. The 

confidence intervals for the linear VAR model are obtained from 1,000 bootstrap resampling. 

The MS-VAR impulse responses are computed using the regime dependent impulse response 

method suggested by Ehrmann, et al. (2003). The confidence intervals for the MS-VAR models 

are obtained from the 50,000 posterior draws for each step.  

Figure 3(a) and (b) shows that the output growth response to an oil price shock in a high 

growth regime is short-lived and the output growth stabilizes to its equilibrium value after 3 

quarters.  The impact is however statistically insignificant. The impact of an oil shock on output 
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5. Conclusion  
 

In this paper we have specified and estimated a Bayesian MS-VAR model with a linear VAR as 

benchmark, to investigate the role of oil price in different states, or regimes, namely a high 

growth–low oil price volatility regime, and a low growth–high oil price volatility regime during 

the period 1960Q2 to 2013Q3. Our findings can be summarised as follows: Firstly, the linear 

model is rejected in favour of a nonlinear alternative, implying that a regime switching model 

exists that characterises the South African business cycle. Secondly, the regime property of the 

model shows that the duration of the high growth regime on average is longer compared to that 

of low growth regime.  Thirdly, we observe that oil price shocks increase the probability to be in 

a low growth regime. Using regime-dependent IRFs, we found that the oil price shock tends to 

be more persistent during low growth states compared to high growth states, and the impact on 

real output growth is also statistically significant. This might be attributed to the asymmetric 

reaction of monetary authorities to mitigate the inflationary effect of oil price shocks during low 

growth regimes. We furthermore observe that whereas the linear VAR, shows no impact of oil 

price shocks on real output growth, the regime-dependent IRFs are able to differentiate between 

responses of oil price shocks under each regime, and suggests a significant impact during periods 

of low growth. 
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Appendix A 

Table 3. Unit root tests 
 

 
LROILP LRGDP 

Panel A: Unit root tests in levels 
ADF -0.7975 [5] -2.1267 [7] 
Zα -8.3953 [0] -1.4807 [2] 
MZα -8.2175 [0] -1.4167 [2] 
MZt -2.014 [0] -0.79409 [2] 
DF-GLS -2.0575 [0] -0.7799 [2] 
KPSS 1.6308*** [0] 1.3030*** [2] 
Zivot-Andrews -4.2794 [5] -3.5118 [7] 

Panel B: Unit root test in first differences 
ADF -8.4629*** [4] -4.4396*** [6] 
Zα -184.07*** [0] -67.232*** [2] 
MZα -104.53*** [0] -22.349*** [2] 
MZt -7.2153*** [0] -3.3059*** [2] 
DF-GLS -12.7050*** [0] -3.9420*** [2] 
KPSS 0.0828 [9] 0.5493 [7] 
Note: Panel A reports unit roots test results for the log levels of the series with a constant and a linear trend in 
the test equation. Panel B reports unit root test results for the first differences of the log series with only a 
constant in the test equation. ADF is the augmented Dickey-Fuller (Dickey and Fuller, 1979) test, Zα is the 
Phillips-Perron Zα unit root test (Phillips and Perron, 1988), MZα and MZt are the modified Phillips-Perron tests 
of Perron and Ng (1996), DF-GLS is the augmented Dickey Fuller test of Elliot, et al. (1996) with generalized 
least squares (GLS) detrending, KPSS is the Kwiatkowski, et al. (1992) stationarity test, and Zivot-Andres is the 
endogenous structural break unit root test of Zivot and Andres (1992) with breaks in both the intercept and linear 
trend. Zα, MZα, and MZt tests are based on GLS detrending. For the ADF unit root statistic the lag order is 
selected by sequentially testing the significance of the last lag at 10% significance level. The bandwidth or the lag 
order for the MZα, MZt, DF-GLS, and KPSS tests are select using the modified Bayesian Information Criterion 
(BIC)-based data dependent method of Ng and Perron (2001). ***, ** and * represent significance at the 1%, 5%, 
and 10% levels, respectively. 
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Table 4.  Multivariate cointegration tests 
 
Panel A: VAR order selection criteria 
        Lag (p) 1 2 3 4 6 8 10 
AIC -13.0023 -13.0141 -13.0494 -13.0637 -13.0714 -13.0734 -13.0356 
HQ -12.9630 -12.9486 -12.9576 -12.9457 -12.9272 -12.9029 -12.8127 
BIC -12.9051 -12.8520 -12.8225 -12.7720 -12.7148 -12.6519 -12.4845 

Panel B: Johansen cointegration tests 
            

Eigenvalues 0.0420 0.0360   

  Critical values  Cointegration vector 
H0 λmax 10% 5% 1% LROILP LRGDP 
  r = 1 7.8100 6.5000 8.1800 11.6500 1.0000 1.0000 
  r = 0 9.1400 12.9100 14.9000 19.1900 -6.5522 -1.0625 

        
Loadings 

H0 λtrace 10% 5% 1% LROILP LRGDP 
  r ≤ 1 7.8100 6.5000 8.1800 11.6500 -0.0033 -0.0625 
  r = 0 16.9500* 15.6600 17.9500 23.5200 0.0009 -0.0017 

Panel C: Stock-Watson cointegration test 
           H0: q(k,k-r) Statistic Critical values for q(4,3) 

   q(2,0) -1.2029 1% -30.3486 
  q(2,1) -16.2054 5% -22.8687 

  10% -19.2077 
Note: Table reports selection criteria and multivariate cointegration tests for the VAR(p) model of  variables 
LROILP and LRGDP. Panel A reports the AIC, BIC, and Hannan-Quinn (HQ) information criteria. The VAR 
order is selected based on minimum BIC and is 1. Panel B reports maximal eigenvalue (λmax) and trace (λtrace) 
cointegration order tests of Johansen (1988, 1991). Non-rejection of r=0 for the Johansen tests implies no 
cointegration. Panel C reports the multivariate cointegration test of Stock and Watson (1988). Under the null q(k,k-
r) of Stock-Watson cointegration test, k common stochastic trend is tested against k-r common stochastic trend (or 
r cointegration relationship). Rejection of q(2,1) for the Stock-Watson test implies cointegration. ***, ** and * represent 
significance at the 1%, 5%, and 10% levels, respectively. 
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Figure 4.  Real GDP growth rate 

 
Figure 5.  Real oil price change  

 


