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Abstract 
 
This study examines the risk spillovers between energy futures prices and Europe-based carbon futures contracts. We 
use a Markov regime-switching dynamic correlation, generalized autoregressive conditional heteroscedasticity (MS-
DCC-GARCH) model in order to capture the time variations and structural breaks in the spillovers. We further evaluate 
the optimal weights, hedging effectiveness, and dynamic hedging strategies for the MS-DCC-GARCH model based on 
both the regime dependent and regime independent optimal hedge ratios. We finally complement our analysis by exam-
ining the in- and out-of sample hedging performances for alternative strategies. Our results mainly show significant 
volatility and time-varying risk transmission from energy markets to carbon market. We also find that spot and futures 
segments of the emission markets exhibit time-varying correlations and volatile hedging effectiveness. These results 
have important investment and policy implications. 
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1. Introduction 

The links between energy consumption and greenhouse gas emissions have important im-

plications for economic growth, the environment and the quality of human life. Fast economic 

growth may produce emissions that can lead to the degradation of the environment, which in turn 

affects human health and reduces the quality of life. About 77% of all greenhouse gases at the 

global level are currently accounted for by carbon dioxide (CO2) emissions and 75% of these CO2 

emissions come from the use of fossil fuels (coal, natural gas and oil) in energy production, trans-

portation, industrial processes and land-use changes.  

These challenging global environmental issues have led many developed and developing 

countries to accept legally binding limitations, reductions and obligations in their greenhouse gas 

emissions as set by the Kyoto Protocol, which was ratified in 1997 by the parties to the United Na-

tions Framework Convention on Climate Change (UNFCCC).1 The Kyoto Protocol has motivated 

the creation of emissions trading schemes and new carbon markets. The “carbon markets” were es-

tablished to help accommodate compliance with the set targets by allowing the participants to 

buy/sell allowances.2 The EU Emission Trading Scheme (EU-ETS) is the largest carbon trading 

market in the world that has been created to comply with the Kyoto Protocol.3 To reduce the costs 

of compliance with this protocol, the European Commission linked in 2003 the Kyoto mechanisms 

and the EU ETS which led to an amendment to the ETS-Directive (EU, 2004). According to the 

‘Linking Directive’, the EU member countries are allowed to use some credits generated by the 

Clean Development Mechanism (CDM), called Certified Emission Reduction (CER), and the Joint 

                                                        
1 The Protocol has two commitment periods which apply to carbon emissions during the periods 2008-2012 and 2013-
2020, respectively. However, the Protocol’s amendment for the second commitment period has not entered into legal 
force. 
2 Currently, there exist several regional markets with spot and futures contract trading on CO2 allowances. These in-
clude BlueNext (France, closed on December 5, 2013), the Nordpool (runs the leading power market in Europe which 
is now owned by NASDAQ), the Chicago Climate Exchange (CCX, recently acquired by Intercontinental Exchange, 
ICE), the Netherlands-based European Climate Exchange, listed in the London Stock Exchange), and the European En-
ergy Exchange (EEX, based in Leipzig, Germany). 
3 The EU-ETS is a cap-and–trade system for greenhouse gas emission (GHG) allowances. It has three distinct trading 
periods: Phase I (2005 to 2007), Phase II (2008 to 2012 corresponding to the Kyoto Protocol commitment period), and 
Phase III (2012 to 2020). 
 

http://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change
http://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change
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Implementation (JI), called Emission Reduction Units (ERU), up to a certain amount to meet their 

obligations (Nazifi, 2013). Linking the EU ETS to the CDM indicates the recognition of CERs as 

equivalent to European Union Allowances (EUAs), making the CERs fully fungible for compliance 

within the EU ETS. 

Due to the emergency of regulations of carbon emissions not only in the US and the EU but 

also in other parts of the world (e.g., Australia, New Zealand and Asia), carbon risk will become 

increasingly important for an increasing number of companies. Utilities are the most affected sector 

given their highest emission intensity, emitting for example 40% of carbon pollution in the EU. The 

utilities are not subject to direct international competition and do not receive the same political 

support as the other energy-intensive sectors, making carbon risk management a higher priority for 

a number of big companies in this sector. It is thus clear that achieving emission targets for 2020 

and 2050 in an effective manner requires not only a continuation of the trading schemes, but also 

an adaptation of large number firms to the regulatory environment and development of risk man-

agement strategies for carbon risk. 

While it will ease the adjustment of the firms to emission caps, help the continuation of ef-

ficient CO2 reduction path, and protect the interest of corporate stakeholders, managing carbon risk 

is however a challenging task. Indeed, successful risk management requires dynamic portfolio 

management practices as the environment surrounding carbon trading is subject to significant un-

certainty owing to regulatory changes, climate change, and interaction with prices of energy 

sources such as crude oil, natural gas, coal, and electricity. These uncertainties and changes also in-

duce significant nonlinear dynamics into carbon prices such as time-variation and regime-

dependence. 

Our study addresses the issue of carbon risk hedging by considering the volatility interac-

tions not only between the carbon spot and futures of the EUA and CER markets, but also between 

these carbon markets and primary energy markets. It also derives dynamic hedging strategies for 
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carbon risk based on suitable models. To do so, we adopt a Markov regime-switching GARCH 

model with dynamic conditional correlations (MS-DCC-GARCH). This model allows one to cap-

ture both the time-variation in conditional volatility of the markets under consideration according to 

different regimes and their dynamic links (correlations), which are driven by regulatory changes 

and demand/supply shocks. Our MS-DCC-GARCH-based results for the in-sample and out-of-

sample hedging effectiveness of the carbon futures contracts as well as the risk spillovers between 

the energy and carbon prices provide useful guidance for the implementation of effective carbon 

risk management and policy regulations. 

The remainder of the study is organized as follows. Section 2 presents a brief review of the 

literature on carbon markets, with a focus on risk management and the methodology. Section 3 de-

scribes the data used and reports the empirical findings. Section 4 discusses the results. Finally, 

Section 5 concludes the paper and provides policy implications.  

 

2. Methods 

2.1. Literature review 

The literature on carbon markets has grown rapidly in recent years. To date, a number of 

studies have examined the economic and energy price drivers of carbon allowances prices (e.g., 

Mansanet-Bataller et al., 2007; Alberola et al., 2008; Keppler and Mansanet-Bataller, 2010; Kim 

and Koo, 2010; Bredin and Muckley, 2011; Creti et al., 2012; Aatola et al., 2013; Lutz al., 2013; 

Sousa and Aguiar-Conraria, 2014). This strand of research generally shows that carbon prices are 

significantly affected by economic aggregate variables (e.g., industrial production), weather condi-

tions (e.g., temperature index), and prices of primary energy commodities such as coal, crude oil, 

electricity, and natural gas. For example, Keppler and Mansanet-Bataller (2010) find evidence sug-

gesting that electricity prices Granger-cause the CO2 prices. Bredin and Muckley (2011) use coin-

tegration techniques to investigate the equilibrium relationship between carbon futures prices and 
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fundamentals such as energy spreads for electricity production, the Euro Stoxx 50, the Eurostat in-

dex of industrial production, the oil price and a temperature index. These authors find evidence of a 

new pricing regime emerging in Phase 2 of the EU ETS and a maturing carbon market driven by 

the fundamentals. In a related study, Creti et al. (2012) investigate the determinants of carbon pric-

es during the two phases of EU ETS. The authors show that although the oil and equity prices are 

significant determinants of carbon prices in both phases, the switching price between natural gas 

and coal is only important in the second phase.  

In addition to the above studies that focus on the drivers of carbon allowances prices, the 

existing literature also examines two other major issues: i) the stochastic properties, market effi-

ciency, price discovery, and spot-futures price relationship in the carbon spot and futures markets 

(e.g., Daskalakis and Markellos, 2008; Seifert et al., 2008; Milunovich and Joyeux, 2010; Arouri et 

al., 2012); and ii) the volatility transmission between carbon spot and futures markets as well as the 

links between energy prices and and carbon prices (e.g., Rittler, 2012; Aatola et al., 2013; Lutz al., 

2013).  

The issue of carbon risk management is much less explored in terms of both scope and 

methodology. For instance, Pinho and Madaleno (2010) estimate the optimal hedge ratios for the 

European Climate Exchange from the multivariate GARCH and OLS models and the naïve strate-

gy. Their results indicate that dynamic hedging provides superior gains (in reducing the portfolio 

variance), compared to those obtained from static hedging, when adjustment costs are not taken in-

to consideration. Those authors also find that utility gains increase with investor’s increased prefer-

ence over risk. More recently, Fan et al. (2014) estimate the hedge ratios and examine the hedging 

effectiveness in the EU-ETS carbon market. They compare the estimated hedge ratios for the CO2 

markets with those derived for other markets, and find that despite the uniqueness of the carbon 

market the results are consistent with those found in other markets. 
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Overall, the scarcity of studies on estimation of hedge ratios for carbon assets and novelty 

of the carbon market provide a compelling motivation for us to examine optimal hedge ratios and 

hedging strategies for carbon risk. 

2.2. The models 

The dynamic conditional correlation (DCC) model proposed in this study is constructed 

along the lines of Billio and Caporin (2005), Lee (2010) and Chang et al. (2011) which examine oil 

and financial markets. Let , , , , ,[ , , , , ]t c t f t e t n t l tR R R R R R c  be the (5 1)u  vector of returns where ,c tR  (

,f tR ) is the CO2 emission spot (futures) return, and ,e tR , ,n tR , and ,l tR  are the returns on the nearby 

electricity, natural gas and coal futures contracts, respectively. The GARCH specification for the 

volatility spillover model follows Ling and McAleer (2003) and is specified as 

0
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, , , , ,diag( , , , , )t c t f t e t n t l tD h h h h h  is the vector of the conditional volatility terms. The condi-

tional mean of the return vector tR  is specified as a vector autoregressive process of order p with 

(5 5)u  parameter matrices i) , 1,2,...,i p . The unexplained component tH  follows a GARCH 

specification described as 1| ~ (0, )t t tID PH \ �  where tP  is the time-varying variance-covariance ma-

trix. Denoting the conditional variance matrix as , , , , ,[ , , , , ]t c t f t e t n t l tH h h h h h c , we impose the follow-

ing specification which allows for volatility spillover in the model  

 
(2)

1 1t t tH c A BHH � � � �           (2) 
 
where c  is a (5 1)u   vector of constants, A  and B  are (5 5)u  matrices for the ARCH and GARCH 

effects  and (2) 2 2 2 2 2
, , , , ,[ , , , , ]t c t f t e t n t l tH H H H H H c . Note that the non-diagonal forms of the matrices A  and B  

allow volatility spillovers across the series. Following Engle (2002), we allow conditional correla-
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tions to vary over time by specifying the variance-covariance matrix t t t tP D D*  with t*  specified 

as the conditional correlation matrix.  

In our model, however, the conditional correlation matrix is regime-switching as governed 

by a discrete Markov process and is defined as 1/2 1/2diag{ } diag{ }t t t tQ Q Q* � � . In order to incorpo-

rate regime shifts into the DCC model specified in Equations (1) and (2), we follow Billio and 

Caporin (2005) and introduce a Markov regime-switching dynamic correlation model by specifying 

tQ  as  

(2)
1 1[1 ( ) ( )] ( ) ( )t t t t t t tQ s s Q s s QD E D H E� � � � � �        (3) 

 
where Q  is the unconditional covariance matrix of the standardized residuals, ( )tsD  and ( )tsE  are 

the regime-dependent parameters that control the regime-switching system dynamics,  {1,2}ts �  is 

the state or regime variable following a first-order, two-state discrete Markov process. Note that the 

variances in this specification are regime-independent whereas the covariances (or correlations) are 

both time-varying and regime-switching.4 As Billio and Caporin (2005) note, the specification in 

which all parameters are regime dependent is highly unstable due to the large number of switching 

parameters. Therefore, we restrict the regime dependent structure to the time-varying correlations 

only. Thus, the model allows both volatility spillover and regime-switching dynamic correlations. 

The specification is then completed by defining the transition probabilities of the Markov process 

as 1( | )ij t tp P s i s j�   . Thus, ijp  is the probability of being in regime i at time t+1 given that the 

market was in regime  at time t, where the regimes i and j take values in {1, 2}. Finally, the transi-

tion probabilities satisfy 2

1
1iji

p
 

 ¦  . 

                                                        
4 We estimate the MS-DCC-GARCH model using the two step approach of Engle and Sheppard (2001) and Engle 
(2002). In the second step, we use the modified Hamilton filter proposed by Caporin and Billio (2005) to solve the 
path-dependence problem (Cai, 1994; Hamilton and Susmel, 1994; Gray, 1996) and estimate the regime-switching 
conditional covariances. 
 

j
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We employ two hedging strategies for the combined spot and futures portfolio based on the 

results of the MS-DCC-GARCH model.  These are the minimum-variance hedge ratio and the op-

timal weights (Kroner and Ng, 1998; Hammoudeh et al. 2010). 

 

3. Empirical Results 

3.1. Data 

We use daily data for European Union Allowances (EUA) and Certified Emission Reduc-

tion (CER) spot and futures prices, obtained from the Thomson Reuters Datastream database. The 

CER market data covers the period from December 1, 2009 to May 12, 2014 with 1,390 observa-

tions.5 Since Phase I is the test period, the data period for the EUA market starts with Phase II (the 

commitment phase) of the European Union ETS (EU Emission Trading System) and covers the pe-

riod from April 15, 2008 to May 12, 2014 with 1,585 observations. Futures data series are con-

structed using the December contract prices for the EUA and CER contracts. 

In addition to the EUA market futures and spot prices (EUAF and EUAS) and the CER 

market futures and spot price (CERF and CERS) data, we utilize in the volatility spillover model 

several energy futures market-related variables to examine the source of the carbon emissions. The 

energy futures prices include: (i) the EEX (European Energy Exchange) electricity futures prices 

(ELECTRIC); (ii) the ARA (Argus/McCloskey) coal futures prices (COAL); and (iii) the ICE (in-

ternational Commodities Exchange) UK natural gas futures prices (GAS).  The inclusion of these 

variables allows us to examine possible risk spillovers from energy markets at large to the carbon 

emission market. The risk spillovers across the energy markets expectedly arise from common risk 

factors driving the price dynamics in these markets such as economic growth trends, regulatory 

changes, technology shifts, and fuel substitution. In short, our volatility spillover model includes 

                                                        
5 The shorter sample period for the CER market is due to data availability as trading on this market started only in 
2008. 
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the carbon spot and futures prices as well as the futures settlement prices for electricity, coal, and 

natural gas. 

Figure 1: Time-variations of carbon spot and futures prices (EUAS, EUAF, CERS, and CERF), electricity price 
(ELECTRIC), natural gas price (GAS), and coal price (COAL) 

 
Figure 1 provides the time series plots for the daily futures and spot energy and carbon pric-

es. Not surprisingly, we observe a general negative effect of the 2007-2008 global financial crisis 

on the energy market, most likely due to the severe economic downturn that prevailed during that 

period. A similar downward trend is also observed since the mid-2011 in both the EUA and CER 

carbon emission markets, which seems to coincide with the prolonged crisis in the euro-zone that 

has led to a widespread economic slowdown, thereby driving energy demand down. 

Table 1: Descriptive statistics for returns (%) 

 
EUAF EUAS CERF CERS ELECTRIC GAS COAL 

        Mean -0.10% -0.10% -0.33% -0.25% -0.03% -0.10% -0.10% 
S.D. 3.27% 3.53% 9.47% 4.12% 2.34% 3.27% 3.53% 
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Min -41.71% -43.00% -99.16% -29.55% -56.00% -41.71% -43.00% 
Max 21.85% 28.70% 225.13% 30.11% 56.00% 21.85% 28.70% 
Skewness -1.15% -0.93% 9.17% -0.55% 0.13% -1.15% -0.93% 
Kurtosis 20.37% 21.96% 255.21% 11.59% 410.89% 20.37% 21.96% 
JB 27807.20*** 32155.40*** 3800083.06*** 7866.60*** 11171448.59*** 74261.85*** 2380.39*** 
Q(1) 3.71* 0.02 18.32*** 0.01 201.34*** 1.12 24.29*** 
Q(5) 55.78*** 40.10*** 24.24*** 4.00 202.36*** 22.46*** 28.42*** 
ARCH(1) 18.25*** 50.60*** 2.03 39.74*** 391.09*** 0.12 44.59*** 
ARCH(5) 49.29*** 61.31*** 2.02 78.74*** 645.37*** 5.91 214.86*** 
        
n 1585 1585 1390 1390 1585 1585 1585 
Notes: This table gives the descriptive statistics for logarithmic returns. In addition to the mean, the standard deviation (S.D.), mini-
mum (min), maximum (max), skewness, and kurtosis statistics, the table reports the Jarque-Bera normality test (JB), the Ljung-Box 
first [Q(1)] and the fourth [Q(5] autocorrelation tests, and the first [ARCH(1)] and the fourth [ARCH(5)] order Lagrange multiplier 
(LM) tests for the autoregressive conditional heteroscedasticity (ARCH). The asterisks ***, ** and * represent significance at the 1%, 
5%, and 10% levels, respectively. 
  

Table 1 provides the descriptive statistics for the log-returns.6 We see that the CER carbon 

market experiences the greatest volatility in price changes relative to the EUA and energy prices. 

Nazifi (2013) notes a lack of competitive conditions in these markets, access constraints on the use 

and the availability of CERs, regulatory changes regarding both EUAs and CERs, and uncertainty 

surrounding CERs. It is also interesting to note that China is the biggest supply country in primary 

CER market. All return series have kurtosis values higher than the normal distribution, implying 

the presence of extreme movements in either direction. 

3.2. Empirical results 

3.2.1. Model identification tests  

As stated in Section 2, we estimate the regime-specific and time-varying correlations in the 

MS-DCC-GARCH model specified in Equations (1)-(2) by adopting the two-step approach pro-

posed by Engle (2002) and Engle and Sheppard (2001). Then, in order to compare the findings 

from the MS-DCC-GARCH model with the static alternative, we also estimate a constant parame-

ter DCC-GARCH model as the benchmark.7  

                                                        
6 Descriptive statistics for the variables in the levels can be made available upon request. 
7 The two-step estimation procedure of Engle (2002) and Engle and Sheppard (2001) is also adopted for the DCC-
GARCH model. Non-diagonal matrices A and B allow for volatility spillovers across the series. 
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 The MS-DCC-GARCH model needs a prior specification of the number of regimes and, 

given that the number of regimes is known, the likelihood is evaluated using the filtering procedure 

of Hamilton (1990), with the modification suggested by Caporin and Billio (2005), followed by the 

smoothing algorithm of Kim (1994). Once the model’s parameters and transition probabilities (   ) 

are obtained, the conditional moments of the MS-DCC-GARCH model in Equation (3) as well as 

the optimal hedge ratio and the optimal portfolio weights are computed by using the predictive 

probabilities , 1( | )i t t tp P s i \ �  i=1,2, that are obtained from the transition probabilities 

1( | )ij t tp P s i s j�   , i,j =1,2, and the filtered probabilities , 1 1 1( | ]i t t tp P s i \� � �  , i=1,2, of the 

modified Hamilton filter.8 Note that we select the number of regimes in both models by using the 

likelihood ratio (LR) tests with the upper bound for the p-values obtained according to Davies 

(1987), and supplement the latter with Akaike (AIC), Bayesian (BIC), and Hannan-Quinn (HQ) in-

formation criteria. 

Table 2: Univariate AR(p)-GARCH(1,1) fit diagnostics 
 ARCH-LM(1) JB Q(10) Q(20) 
     
EUAF 0.0636 

(0.8009) 
937*** 

(0.0000) 
9.3072 

(0.4094) 
17.7365 
(0.5401) 

EUAS 7.2466*** 
(0.0072) 

2717*** 
(0.0000) 

11.1058 
(0.2685) 

17.7378 
(0.5400) 

CERF 0.0014 
(0.9699) 

16041953*** 
(0.0000) 

2.6003 
(0.9781) 

11.0213 
(0.9231) 

CERS 1.0289 
(0.3106) 

8068*** 
(0.0000) 

6.7980 
(0.6581) 

16.0379 
(0.6547) 

ELECTRIC 0.2295 
(0.6319) 

17725620*** 
(0.0000) 

9.9844 
(0.3517) 

13.9466 
(0.7868) 

GAS 0.0544 
(0.8156) 

5375*** 
(0.0000) 

9.03887 
(0.4337) 

14.3744 
(0.7614) 

COAL 0.1874 
(0.6651) 

376*** 
(0.0000) 

5.2031 
(0.8162) 

12.1432 
(0.8794) 

Notes: The table reports diagnostic tests for univariate autoregressive GARCH model fits. An AR(p)-GARCH(1,1) model is fitted 
to each series. The AR order p is 3 for CERF and CERS series and 5 for the others. Table reports the Jarque-Bera normality test 
(JB), the Ljung-Box first [Q(10)] and the fourth [Q(20] autocorrelation tests, and the first [ARCH(1)] order Lagrange multiplier 
(LM) tests for the autoregressive conditional heteroscedasticity (ARCH). The p-values of the tests are given in parentheses. The as-
terisks ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 

                                                        
8 Given the transition probability matrix P and the vector of filtered probabilities pt-1, the vector of predictive probabili-
ties is obtained as 1t tp P p

�
 � .  
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We specify the order of the vector autoregressive component in Equation (1) based on the 

AIC. The results select p=5 for the EUA market model and p=3 for the CER market model. As to 

the GARCH orders, we first estimate a univariate autoregressive GARCH (AR-GARCH) model for 

each series and perform several diagnostic tests for possible misspecification. Table 2 presents di-

agnostic test results. The AR order p is identified as 3 for CERF and CERS series and 5 for the oth-

er series. The Lagrange multiplier (LM) ARCH(1) test results show that GARCH(1,1) specification 

is sufficient to capture the conditional variance in all series except for EUA spot returns. However, 

when a multivariate model is estimated as specified in Equations (1)-(2), the diagnostics indicate no 

remaining ARCH(1) in the residual for this series as well.9 The results of the Ljung-Box Q(p) tests 

indicate no autocorrelation at order p=10 and p=20. The return series are not normally distributed 

as indicated by the Jarque-Bera (JB) normality tests. Based on the evidence in Table 2, we specify 

the GARCH component of the model in Equations (1)-(2) as GARCH(1,1). 

 After specifying the VAR and GARCH orders in Equations (1)-(2), we next estimate a non-

regime-switching DCC-GARCH model and the MS-DCC-GARCH alternative with 2 regimes in 

order test the presence of nonlinearity or regime-switching. The LR nonlinearity tests for the EUA 

and CER market models are reported in Tables 3 and 4, respectively. They strongly reject the non-

switching DCC-GARCH model in favor of the MS-DCC-GARCH model with 2 regimes for both 

the EAU and CER markets, in views of the standard LR p-values and Davies (1987) upper bound 

for the p-values much below 1% in both cases. 

3.2.2. Volatility spillovers to EUA and CER carbon markets 

Table 3 reports the parameter estimates of the MS-DCC-GARCH model for the EUA mar-

ket. We observe that the volatility spillover parameters (ai,j,bi,j) relating to Equation (2) are general-

ly highly significant, implying significant risk transmission across the energy prices and the EUA 

                                                        
9 The value of the LM ARCH(1) test for the residual of the EUAS return series in Equations (1)-(2) is 0.8602 with a p-
value of 0.3537. 
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carbon spot and futures prices. As expected, the volatility spillovers are strong and positive be-

tween the spot (EUAS) and futures (EUAF) markets. Similarly, strong volatility transmission from 

the electricity market to EUA spot and futures markets is observed without significant effect in the 

opposite direction. The finding of a significant electricity market effect on the carbon price is con-

sistent with Keppler and Mansanet-Bataller (2010) and Sousa and Aguiar-Conraria (2014). There is 

also significant volatility transmission from coal and natural gas prices to electricity price. Those 

primary energy sources are used in electricity generation, while oil is not.  

In the case of the CER market, the findings reported in Table 4 do not yield as significant 

spillover effects as we observed for the EUA market. The weaker volatility spillovers to the CER 

spot and futures markets can potentially be explained by the long-term nature of the CER contracts 

under the Clean Development Mechanism (CDM), implying certain independence from the EUA 

and energy markets.10  

Table 3: Estimates of the MS-DCC-GARCH model for the EUA market 
Variance  
parameters Equations 

 
EUAF EUAS ELECTRIC GAS COAL 

ci 0.9523*** (0.2690) 0.9371*** (0.1073) 2.1690*** (0.1774) 0.2189*** (0.0181) 0.0015 (0.0139) 

ai1 0.1314*** (0.0251) 0.1155*** (0.0244) -0.0858 (0.0552) 0.1216*** (0.0104) 0.0306*** (0.0095) 

ai2 0.0933*** (0.0233) 0.1119*** (0.0141) 0.0545 (0.0518) -0.1109*** (0.0104) -0.0191* (0.0102) 

ai3 0.1794*** (0.0424) 0.1864*** (0.0348) 0.1193*** (0.0191) -0.0330*** (0.0082) -0.0175*** (0.0027) 

ai4 -0.0526 (0.0339) -0.0783** (0.0377) 0.0305*** (0.0112) 0.0802*** (0.0208) 0.0027 (0.0051) 

ai5 0.0551 (0.0357) 0.0409 (0.0292) 0.0698*** (0.0180) -0.1237*** (0.0284) 0.0655*** (0.0089) 

bi1 0.4123*** (0.0490) 0.2329*** (0.0130) -0.5378*** (0.0344) -1.3416*** (0.2181) -0.5101*** (0.1545) 

bi2 0.2924*** (0.0224) 0.4634*** (0.0415) -0.4418*** (0.0404) 1.3801*** (0.2433) 0.5038*** (0.1397) 

bi3 -0.67* (0.3808) -0.2226** (0.1044) 0.6519*** (0.0466) 0.7989*** (0.0520) 0.1335*** (0.0112) 

bi4 1.2343*** (0.3702) 1.1447*** (0.3141) -1.8942*** (0.2346) 0.8825*** (0.0071) 0.0010 (0.0276) 

bi5 -1.3037*** (0.2937) -1.1701*** (0.2049) 1.2981*** (0.2998) 0.1385*** (0.0024) 0.8938*** (0.0127) 

DCC parameters 
    D(st=1) 0.0272*** (0.0055) 
 

Regime properties 

E( st =1) 0.7546*** (0.0662) 
 

Observations Prob. Duration 

D(st =2) 0.1622*** (0.0060) Regime 1 1392.50 0.880 12.770 

E(st =2) 0.4284*** (0.0732) Regime 2 191.50 0.120 1.750 

      
                                                        
10 Under the Kyoto Protocol, the CDM is a project-based financing mechanism whereby eligible Annex 1 Parties may 
purchase carbon credits generated by projects hosted in developing non-Annex 1 countries. 
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 MS DCC GARCH DCC GARCH    

log L -13592.843 -17204.974 
 

Transition probabilities 

AIC 17.216 21.749 
 

Regime 1 Regime 2 

HQ 17.269 21.774 Regime 1 0.922 0.572 

BIC 17.358 21.817 Regime 2 0.078 0.428 

      LR linearity test 7224.2622*** (0.0000) [0.0000] 
  Notes: This table reports the estimates of the MS-DCC-GARCH model given in Equations (1)-(3). The GARCH part of the model is 

specified as a GARCH(1,1). The MS-DCC-GARCH model is estimated using the maximum likelihood (ML) method. The likelihood 
ratio (LR) linearity test is reported with p-value in parentheses. The p-value of the Davies (1987) test is also given in the square 
brackets. Standard errors of the estimates are given in parentheses. HQ stands for the Hannan-Quinn information criterion, BIC for 
the Bayesian information criterion, and log L for the log likelihood.  ***, ** and * represent significance at the 1%, 5%, and 10% lev-
els, respectively. 

 

On the other hand, the volatility persistence coefficients measured by ii iia b�  in the 

GARCH specification are respectively 0.41, 1.08, 0.36, 0.98, and 1.06 for the CER futures, CER 

spot, electricity futures, natural gas futures, and coal futures variables in the CER market model. 

They are respectively 0.54, 0.40, 0.77, 0.96, and 0.96 for the EUA futures, EUA spot, electricity, 

natural gas, and coal variables in the EUA market model. These findings indicate strong volatility 

persistence for CER spot, coal and natural gas futures contracts, with likely permanent memory for 

CER spot and coal in the CER model. We observe moderate volatility persistence for EUA spot 

and futures and electricity in the EUA market model and for the CER futures and electricity in the 

CER market model, suggesting different volatility dynamics.  

Table 4: Estimates of the MS-DCC-GARCH model for the CER market 
Variance  
parameters Equations 

 
CERF CERS ELECTRIC GAS COAL 

ci 62.8379*** (8.9844) 1.6318*** (0.1164) 3.4944*** (0.1364) 0.0049 (0.0960) 0.1497** (0.0751) 

ai1 0.3443*** (0.0148) 0.0069 (0.0079) 0.0010 (0.0070) -0.0053*** (0.0015) 0.0014 (0.0052) 

ai2 0.0597 (0.1403) 0.3178** (0.1436) 0.0276*** (0.0025) 0.0246 (0.0198) 0.0134 (0.0417) 

ai3 -0.1464 (0.0993) -0.2377** (0.1112) 0.0474*** (0.0099) -0.0326 (0.0260) -0.0107 (0.0161) 

ai4 0.6030 (0.7086) 0.0825 (0.0782) -0.0119 (0.0455) 0.3195*** (0.1040) 0.0104 (0.0110) 

ai5 -0.9288 (0.6989) 0.0020 (0.1840) -0.0828 (0.0606) 0.1437 (0.1235) 0.0433 (0.0439) 

bi1 0.0622* (0.0366) 0.0194 (0.0618) -0.6890*** (0.1557) 0.0726** (0.0333) -0.3954 (0.2773) 

bi2 1.8040 (1.1559) 0.7580*** (0.0054) -0.9058 (0.9344) -0.2088*** (0.0102) -0.0679 (0.0657) 

bi3 -13.6993** (6.4001) -0.4510*** (0.1733) 0.3145*** (0.0046) 0.4985 (0.3425) -0.1210*** (0.0064) 

bi4 -6.7378 (5.6436) -1.6606*** (0.4363) -0.9223** (0.4446) 0.6625*** (0.0500) -0.0949* (0.0575) 

bi5 -15.6505 (10.5654) -0.4867 (0.5343) -0.1287 (0.1469) 0.7210* (0.3852) 1.0184*** (0.1378) 

DCC parameters 
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D(st=1) 0.0181*** (0.0003) 
 

Regime properties 

E( st =1) 0.5015*** (0.0309) 
 

ni Prob. Duration 

D(st =2) 0.0088 (0.0188) Regime 1 1041.10 0.750 7.770 

E(st =2) 0.1817*** (0.0229) Regime 2 347.90 0.250 2.590 

       MS DCC GARCH DCC GARCH    

log L -18066.806 -20075.983 
 

Transition probabilities 

AIC 26.075 28.936 
 

Regime 1 Regime 2 

HQ 26.134 28.964 Regime 1 0.871 0.387 

BIC 26.233 29.011 Regime 2 0.129 0.614 

      LR linearity test 4018.3546*** (0.0000) [0.0000] 
  Notes: The table reports the estimates of the MS-DCC-GARCH model given in Equations (1)-(3). The GARCH part of the model is 

specified as a GARCH(1,1). The models are estimated over the full sample period 12/1/2009-12/5/2014 with n=1390 observations. 
See the notes to Table 3 for the explanation of the parameters and statistical tests. 

 

 

Table 5: Volatility spillover tests 
H0: No volatility spillover from row variable to column variable 

       
 

EUAF EUAS 
  

CERF CERS 
EUAS 299.7072*** -- 

 
CERS 7.0168** -- 

EUAF -- 633.8713*** 
 
CERF -- 1750.7370*** 

ELECTRIC 31.2979*** 28.6637*** 
 
ELECTRIC 530.2529*** 10.8706*** 

GAS 11.1154*** 13.3312*** 
 
GAS 18.4174*** 43.9574*** 

COAL 19.8579** 32.6166*** 
 
COAL 0.8261 330.0446*** 

Notes: The table reports the Wald tests for testing the no volatility spillover restrictions imposed on Equation (1). The 
tests report no volatility spillover from the variable in the row to the variable in the column. The tests are distributed as 
Chi-square with 2 degrees of freedom. ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 
  

Table 5 presents formal volatility spillover tests for the EUA and CER markets, which are 

based on Wald tests involving two zero restrictions on the relevant elements of matrices A and B . 

For example, the null hypothesis of no volatility spillover from the electricity returns to the EUA or 

CER futures returns is tested by imposing the restriction 13 13 0a b  . The test results reported in 

Table 5 strongly reject the no volatility spillover hypothesis with the exception of volatility spillo-

ver from coal to CER futures. This confirms the presence of extensive volatility spillovers from en-

ergy prices to the EUA and CER markets. 

3.2.3. Dynamic correlations across market regimes 
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As explained earlier, the parameters ( )tsD  and ( )tsE , {1,2}ts � , in Tables 3-4 generate re-

gime-specific conditional correlations in the MS-DCC-GARCH model. For both EUA and CER 

market models, ( )tsD  and ( )tsE  are highly significant in both regime 1 (low volatility) and regime 

2 (high volatility). Therefore, there are significant correlations among the series in both regimes. 

The smoothed regime probabilities plotted in Figure 4 confirm this empirical finding. However, 

since the estimates for ( ) ( )t ts sD E�  across the regimes are quite different, the low and high volatil-

ity regimes are characterized by very different dynamic correlation structures. Indeed, the sums 

( ) ( )t ts sD E�  are 0.78 (0.59) for the low (high) volatility regime in the EUA market, and 0.52 

(0.19) for the low (high) regime in the case of the CER market. Since these parameters control for 

the correlation persistence implied by the models, the findings suggest that the correlations are 

more persistent in the low volatility regimes than in the high volatility regimes in both markets. 

Moreover, higher values of ( ) ( )t ts sD E�  for the EUA market compared to the CER market in both 

regimes imply that the correlation persistence is more pronounced in the EUA market. 

Figure 2: Dynamic correlation estimates from the MS-DCC-GARCH model for the EUA market model  
Figure plots the dynamic correlation estimates from the MS-DCC-GARCH model given in Equations (1)-(3). The symbol ,ij tU  

stands for the dynamic correlation between the series i and j at time t, i,j � {c,f,e,n,l}, where c stands for the EUA spot price, f stands 
for the EUA futures price, e stands for the electricity price, n stands for the  natural gas price, and l stands for the coal price. 
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Figure 3: Dynamic correlation estimates from the MS-DCC-GARCH model for the CER market model  
See notes to Figure 2 for the definition of the variables. 

 
 

The features of correlation persistence are indeed reflected in the dynamic correlations plot-

ted in Figures 2 and 3 for the EUA and CER market models, respectively. The correlation estimates 

plotted in Figure 2 for the EUA market are on average greater than those for the CER market in 

Figure 3, which supports the implications of the ( )tsD  and ( )tsE . The persistence and regime 

properties of the EUA and CER markets as captured by differences in the estimates of the ( )tsD  

and ( )tsE  parameters do show similar analogous features also in terms of transition probabilities, 
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ergodic (regime) probabilities, and duration of the regimes. In Tables 3 and 4, the transition proba-

bility estimates 11p  ( 22p ) are 0.922 and 0.871 (0.428 and 0.614) for the EUA and the CER markets, 

respectively. Thus, the low volatility regime is more persistent for the EUA market than for the 

CER market, while the high volatility regime is less persistent. Regime persistence differences are 

also reflected in the transition probability estimate from the high (low) volatility regime 12( )p  to 

the low (high) volatility regime 21( )p . We typically see that the carbon markets spend much of the 

time in the low volatility regime, resulting in higher duration estimates for the low volatility regime 

compared to the high volatility regime. The durations of the low volatility regimes are 12.770 days 

and 7.770 days while the durations of the high volatility regimes are 1.750 days and 2.590 days, re-

spectively, for the EUA and CER markets.  

Another noteworthy feature of the dynamic correlation estimates in Figures 2 and 3 are their 

highly time-varying nature, providing support for the DCC specification against a constant correla-

tion specification. In general, correlation values tend to decline after mid-2011 which also coin-

cides with the end of the euro-zone crisis. We also note a significant structural break in the correla-

tions between EUA spot and futures in mid-2010, which seems to happen long after Phase I ended 

in 2008, and another break  near the end of Phase II in 2012. 

The smoothed probability estimates plotted in Figure 4 also reveal significant features in 

both the EUA and CER markets. As indicated earlier, there is a lack of competitive conditions and 

there are regulatory changes regarding both markets. On the other hand, there are access constraints 

on the use and the availability of CERs, caps on the amount of CERs, and uncertainty surrounding 

the CERs. The results show that the low volatility regime for the CER market corresponds to pre-

2012 period which is the end of Phase II. Periods after mid-2012 are almost uniformly periods of 

high volatility for the CER market. This period corresponds to Phase III (the post Kyoto phase) 

which started in 2012 and changed a number of rules regarding the carbon market. In the CER 

market, 75% percent of the observations fall into the low volatility regime, while 25% fall into the 
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high volatility regime. On the other hand, the EUA market can mostly be characterized by low vol-

atility regime periods with 88% of the observations falling into the low volatility regime. In sum, 

the periods of high volatility in the EUA market correspond to the initial months of Phase II and 

Phase III, whereas the high volatility for the CER market mainly corresponds to the post Kyoto pe-

riod (Phase III). 

Figure 4: Smoothed probability estimates 
The figure plots the smoothed probability estimates of the low volatility regime (regime 1) and the high volatility re-
gime (regime 2). The shaded regions in the figures correspond to the periods where the smoothed probability of the 
corresponding regime is the maximum. 
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4. Discussion: Hedging performance  

We obtain regime independent moments and perform in- and out-of-sample analysis of the 

hedging strategies as in Lee (2010) and Chang et al. (2011). As indicated earlier, we evaluate the 

portfolios based on three criteria: (i) the optimal hedge ratio; (ii) the optimal portfolio weight; and 

(iii) the hedge effectiveness index.11 In-sample portfolios are constructed by first estimating the 

EUA market model over the sample period 4/15/2008-3/18/2013 and the CER market model over 

the sample period 12/1/2009-3/18/2013, and then computing the in-sample covariance matrix ( tP ) 

in Equation (3). The in-sample analysis contains 1,285 (1,090) portfolio points for the EUA (CER) 

market. On the other hand, the out-of-sample portfolios are constructed following a recursive pro-

cedure. The in-sample estimates of the EUA and CER market models are firstly used to obtain the 

predicted covariance matrix 1TP � and to construct the first out-of-sample portfolio for 3/19/2013. 

Portfolio holdings are then adjusted recursively on a daily basis by adding the next observation and 

updating the predicted covariance matrix for the next day. By doing so, we obtain 300 out-of-

sample portfolio points over the period 3/19/2013-12/5/2014. Finally, hedged and optimal portfoli-

os are computed. 

The need for a dynamic hedging strategy is warranted by significant time variation in the 

correlations across the carbon markets. In addition, the finding of significant correlations between 

carbon and energy markets implie that the factors impacting the energy markets also drive volatility 

in the emission markets. Considering possible drivers of volatility in energy prices such as demand 

and supply side factors, weather conditions, climate change, and economic growth trends, it can be 

argued that commonalities in energy market fundamentals also impact CO2 trade. Furthermore, 

                                                        
11 The optimal hedge ratio is defined as *

, ,t cf t f th hT  , where                and                      estimated 
by Equations (1)-(3). The regime independent covariances are obtained as the probability weighted average of regime-
dependent covariances where the weights are corresponding predictive regime probabilities. See Kroner and Ng (1998), 
Hammoudeh et al. (2010), and Chang et al. (2011) for details regarding the optimal weight calculations. The covariance 
term is obtained as in optimal hedge ratio. As to the hedging effectiveness, it was originally proposed by Ederington 
(1979) and measures the percentage reduction in the variance of the hedged portfolio relative to the unhedged portfolio. 
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significant volatility transmissions from energy markets to the market for carbon emissions further 

emphasize the need for hedging. 

Figure 5: In-sample and out-of-sample estimates of the optimal hedge ratio and optimal portfolio weight 
Figure plots the estimates of the time-varying optimal hedge ratios and optimal portfolio weights. The shaded regions in the graphs 
correspond to the out-of-sample period. 

 
 

Figure 5 presents evidence of significant time variation in the hedge ratios and optimal port-

folio weights for both the EUA and CER markets with the CER market exhibiting greater volatility 

in the optimal hedge positions. A close look at the in-sample statistics for the unhedged and hedged 

portfolios reported in Table 6 indicates significant gains from adopting dynamic hedging strategies, 
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particularly for the EUA market. As expected, the minimum-variance hedging strategy yields the 

greatest reduction in the volatility of the hedge portfolio, with 92% (71%) variance reduction 

achieved by the dynamic (static) strategies in the EUA market. Similarly, the minimum-variance 

hedging strategy yields 40% (38%) reduction in variance with the dynamic (static) strategies in the 

case of the CER market. It is clear that the dynamic hedging strategy yields the largest benefit for 

the EUA market.  

Table 6: Summary statistics for in-sample hedge portfolios 

 
Mean S.D. Min Max HE 

EUA Market 
Unhedged Portfolio Return -0.147 2.946 -15.876 24.154 -- 

MS-DCC-GARCH Hedged Portfolio Return -0.003 0.780 -10.334 9.691 92.995 

DCC-GARCH Hedged Portfolio Return -0.020 1.572 -9.733 9.567 71.508 

MS-DCC-GARCH Optimal Portfolio Return -0.144 2.830 -15.097 21.846 7.687 

DCC-GARCH Optimal Portfolio Return -0.146 2.865 -15.876 23.814 5.418 

MS-DCC-GARCH Optimal Hedge Ratio 1.004 0.067 0.240 1.392 -- 

DCC-GARCH Optimal Hedge Ratio 0.387 0.433 0.001 2.288 -- 

MS-DCC-GARCH Optimal Portfolio Weight 0.189 0.248 0.000 1.000 -- 

DCC-GARCH Optimal Portfolio Weight 0.387 0.179 0.000 1.000 -- 

      CER Market 
Unhedged Portfolio Return -0.337 4.014 -33.647 17.693 -- 

MS-DCC-GARCH Hedged Portfolio Return -0.145 3.107 -29.605 18.072 40.090 

DCC-GARCH Hedged Portfolio Return -0.157 3.150 -24.587 19.058 38.411 

MS-DCC-GARCH Optimal Portfolio Return -0.338 3.735 -33.642 15.397 13.423 

DCC-GARCH Optimal Portfolio Return -0.331 3.741 -33.647 17.693 13.129 

MS-DCC-GARCH Optimal Hedge Ratio 0.638 0.228 0.054 1.101 -- 

DCC-GARCH Optimal Hedge Ratio 0.489 0.190 0.126 1.635 -- 

MS-DCC-GARCH Optimal Portfolio Weight 0.575 0.288 0.000 1.000 -- 

DCC-GARCH Optimal Portfolio Weight 0.619 0.253 0.000 1.000 -- 
Notes: The in-sample period for the EUA market covers 4/15/2008-3/18/2013 with 1285 observations and for the CER market it co-
vers the period 12/1/2009-3/18/2013 with 1090 observations. HE stands for the hedge effectiveness index. 

 

On the other hand, we find that the optimal portfolio approach yields much inferior results 

both with respect to portfolio return and risk compared to the minimum-variance hedging strategy. 

In the case of the out-of-sample results (Table 7), although the minimum-variance strategy yields 

the greatest risk reduction in the EUA market, we observe that the optimal portfolio approach 
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yields greater HE index values for the CER market than the minimum-variance strategy. In either 

case, however, the dynamic strategy yields better results than the static alternative. 

Table 7: Summary statistics for the out-of-sample hedge portfolios 

 
Mean S.D. Min Max HE 

EUA Market 
Unhedged Portfolio Return 0.111 5.375 -43.000 28.701 -- 

MS-DCC-GARCH Hedged Portfolio Return -0.012 2.280 -28.246 24.858 82.000 

DCC-GARCH Hedged Portfolio Return 0.133 2.798 -29.256 19.741 72.897 

MS-DCC-GARCH Optimal Portfolio Return 0.109 4.778 -41.709 19.311 20.966 

DCC-GARCH Optimal Portfolio Return 0.107 4.810 -42.459 19.666 19.916 

MS-DCC-GARCH Optimal Hedge Ratio 1.005 0.293 0.765 4.467 -- 

DCC-GARCH Optimal Hedge Ratio 0.418 0.949 0.001 10.416 -- 

MS-DCC-GARCH Optimal Portfolio Weight 0.435 0.285 0.000 1.000 -- 

DCC-GARCH Optimal Portfolio Weight 0.390 0.170 0.000 1.000 -- 

      CER Market 
Unhedged Portfolio Return -0.290 11.868 -76.913 99.040 -- 

MS-DCC-GARCH Hedged Portfolio Return -0.231 11.716 -75.178 99.040 2.531 

DCC-GARCH Hedged Portfolio Return -0.167 11.943 -74.178 99.040 -1.266 

MS-DCC-GARCH Optimal Portfolio Return -0.266 9.997 -69.315 71.236 29.041 

DCC-GARCH Optimal Portfolio Return -0.350 8.683 -63.956 53.061 46.470 

MS-DCC-GARCH Optimal Hedge Ratio 0.072 0.073 -0.005 0.247 -- 

DCC-GARCH Optimal Hedge Ratio 0.266 0.141 0.073 0.944 -- 

MS-DCC-GARCH Optimal Portfolio Weights 0.778 0.217 0.101 1.000 -- 

DCC-GARCH Optimal Portfolio Weights 0.913 0.196 0.025 1.000 -- 
Notes: The out-of-sample period for the EUA market covers the period 3/19/2013-12/5/2014 with 300 observations, and for the CER 
market it covers the period 3/19/2013-12/5/2014 with 300 observations.  
 

5. Conclusions and Policy Implications 

This study uses a Markov regime-switching dynamic correlation, generalized autoregressive 

conditional heteroscedasticity (MS-DCC-GARCH) model to examine the volatility spillovers be-

tween four primary energy futures prices and Europe-based carbon futures contracts in the EUA 

and CER markets, while accounting for time variations and structural breaks in the spillovers. It al-

so evaluates the optimal hedge ratios, dynamic hedging strategies and hedging effectiveness in both 

carbon markets based on the derived regime dependent and regime independent optimal hedge rati-

os. 
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The results show that the carbon emission markets are linked to changes in the electricity, 

natural gas and coal futures markets, and more significantly so in the case of the EUA market. The 

link is formed through the effects of the forces that drive volatility in the energy market as well as 

time-varying risk transmissions from these energy markets to the carbon market, both in terms of 

the cross-market correlations and volatility spillovers. The evidence of risk transmission to carbon 

markets suggests the need for sound policies to stabilize the carbon markets as well as good in-

struments to effectively hedge the positions. Instability in the carbon market coupled with inability 

to hedge positions may generate significant risk exposures and unexpected failures due to changing 

links between the carbon spot and futures markets, and between CO2 emission prices and energy 

prices. Policymakers should advocate hedging policies that help improve the cost effectiveness of 

the substitutable EUA and CER CO2 emission futures markets. In the absence of hedging instru-

ments, these volatile markets are highly risky. Hedging in the short run will also give the polluters 

time to gradually recourse to cleaner energy sources, with the resulting outcome of lower carbon 

emissions. 

Policymakers and traders should be aware that hedging strategies work differently for the 

EUA and CER carbon markets. The minimum-variance hedging strategy works better for the EUA 

market, while the optimal portfolio approach gives better hedging results for the more volatile CER 

markets. Overall, the hedging strategies are more effective in the EUA market than in the CER 

market. By considering both in-sample and out-of-sample analysis of comovements and hedging 

strategies for both EUA and CER markets, we show that the spot and futures segments of these 

markets exhibit time-varying correlations and hedging effectiveness. This hedging effectiveness is 

however found to be highly volatile, particularly in the CER market possibly due to its dependence 

on the CDM projects. We also find that CO2 futures are not always highly effective as hedge in-

struments because of occasional breaks and shifts in the carbon spot-futures price links.   
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This result has implications for the adoption of cleaner energy sources in the long run. An-

other important fact is that the EUA carbon market is subject to volatility spillovers from energy 

futures markets (electricity, natural gas and coal), with the electricity market being the main volatil-

ity transmitter. The volatility spillover from the energy markets to the CER market is weaker than 

in the case of the EUA market. Our findings finally point to the importance of regime switching in 

regard of hedging performance, and suggest that ignoring regime switching in the carbon market 

may result in significant reduction in hedging performance. 

Adding the CER market to that of EUA broadens the scope of the carbon trading institu-

tionalized by EU ETS since those products are substitutes and give investors and regulators more 

opportunities to achieve the objectives. However, this subject is ambitious and will be delegated to 

a future project. 
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