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Abstract

In this paper we test whether the key metals prices of gold and platinum
significantly improve inflation forecasts for the South African economy. We
also test whether controlling for conditional correlations in a dynamic setup,
using bivariate Bayesian-Dynamic Conditional Correlation (B-DCC) mod-
els, improves inflation forecasts. To achieve this we compare out-of-sample
forecast estimates of the B-DCC model to Random Walk, Autoregressive
and Bayesian VAR models. We find that for both the BVAR and BDCC
models, improving point forecasts of the Autoregressive model of inflation
remains an elusive exercise. This, we argue, is of less importance relative to
the more informative density forecasts. For this we find improved forecasts
of inflation for the B-DCC models at all forecasting horizons tested. We thus
conclude that including metals price series as inputs to inflation models leads
to improved density forecasts, while controlling for the dynamic relationship
between the included price series and inflation similarly leads to significantly
improved density forecasts.
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1. Introduction

The value of the local currency in South Africa (SA hereafter) is often
linked to a large extent to commodity prices, in particular that of precious
metals (which make up nearly a fifth of total exports). As such, markets
tend to view precious metal price movements as significant factors explaining
domestic currency movements. Currency fluctuations, in turn, impact overall
prices in the economy, the extent of which is generally unclear in SA. The
purpose of our paper is then to assess whether metals prices should in fact
be considered as important inputs in forecasting local inflation.

We consider in this analysis the prices of gold and platinum, which make
up the largest part of our precious metals export basket. We set out to test
whether the inclusion of these key metal price series improves our ability
to forecast inflation for SA. We also test whether explicitly controlling for
the time-varying nature of co-movement between these series significantly
improves point and density forecasts.

Similar to the work of Chen, Turnovsky, and Zivot (2011), our analysis
excludes other fundamental factors which are based on alternative structural
models of price dynamics, such as including the output gap or measures of
financial development or trade openness.1 The main objective of this paper is
to determine whether gold and platinum prices, which can be consider largely
exogenous in terms of local price discovery, are useful in complementing fore-
casting models of inflation. This will be tested by using out-of-sample point
and density forecasts of SA inflation for the period since adopting inflation
targeting in 2000. To achieve this, we first fit Bayesian Vector Autoregres-
sion (B-VAR) and Bayesian VAR Dynamic Conditional Correlation (B-DCC)
models, which we then use to produce out-of-sample forecasts at di↵erent
horizons. We then compare to the naive Random Walk and Autoregressive
model, in terms of the forecasts of inflation, in order to assess whether any
meaningful forecasting information has been added by the metals series. This
follows as the latter benchmark models are solely based on past information
of inflation.

Both the B-VAR and B-DCCmodels are estimated using Bayesian Markov
Chain Monte Carlo (MCMC) methods. Forecasts are generated using recur-
sive estimations, while expanding the estimation sample as forecasting moves

1C.f. Ustyugova and Gelos (2012) for a structural analysis on the impact of commodity
prices on inflation
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forward. The Bayesian procedures make use of normal di↵use priors and pos-
teriors, and the models are estimated using Gibbs sampling.

Our results provide insight into the usefulness of employing Bayesian
shrinkage methods to VARs and utilizing time-varying correlation estimates
in forecasting inflation using real price inputs, in addition to assessing the
importance of precious metals prices in forecasting inflation. The results
can then be summarized in two key findings. Firstly, that gold and plat-
inum prices generally provide useful information as input to inflation density
forecasts for South Africa at multiple horizons since 2000. This is comple-
mentary to findings of Chen, Turnovsky, and Zivot (2011), who also illustrate
the importance of considering metals price series as inputs to SA and other
inflation targeting emerging market inflation forecasts. Secondly, we find
that utilizing time-varying correlation estimates also improves density fore-
casts of inflation for variables included in the estimation. A future study
might consider utilizing similar strategies to test other structural inputs in
forecasting inflation.

The paper is organized as follows: Section 2 discusses the literature rel-
evant to our study and contextualizes our approach. Thereafter, Section 3
discusses the methodology that we will use in order to address the questions
posed in the introduction, using the data discussed in 4. Section 5 discusses
the results, after which we conclude the paper in Section 6.

2. Literature Review

Most economists and monetary authorities would agree that commodity
prices have significant inflationary consequences, although, as suggested by
Gospodinov and Ng (2013), opinions on the formal link between inflation
and commodity prices remain divided. Some argue that asset market- and
commodity prices should be considered leading indicators to the general price
level, while others argue that idiosyncratic movements impact prices mainly
through the distribution channel. Despite inconclusive evidence of the direct
link between commodity prices and inflation2, suggestions as to how authori-
ties should respond to commodity price signals remain divided. Bean (2004)
provides a more detailed comparison of views on how to approach a build-up
of general asset market prices in an inflation targeting regime. Fuhrer and

2C.f. Hooker (2002) and Stock and Watson (2001) who suggest that evidence of com-
modity prices improving inflation forecasts are both elusive and episodic
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Moore (1992) and Bernanke and Gertler (2000), e.g., suggest that authorities
should not respond to asset market prices as it could lead to a loss in infla-
tionary control.3 Others, such as Cecchetti, Genberg, and Wadhwani (2002),
have suggested that policy initiatives aimed at targeting asset price misalign-
ments could improve general price stabililty and the overall macroeconomic
performance.

Despite divergent views on the appropriate actions to be taken by inflation
targeting authorities, evidence has been provided as to the importance of
certain price indexes in improving general price level forecasts. Gospodinov
and Ng (2013) provide evidence that a reduced rank of multiple commodity
price indexes, using a principal components approach, produces significant
improvements in the predictive power of inflation forecasts. Chen, Turnovsky,
and Zivot (2011) consider four commodity exporting emerging markets which
have adopted inflation targeting, including SA, and show that considering
commodity price aggregates provide predictive power to inflation forecasts.
In particular, they highlight the importance of considering metals price series
for SA inflationary forecasts.

We build on the work done by Chen et al. (2011), and focus on SA in-
flation forecasts using two key metals series: gold and platinum. Precious
metals typically make up about 6% of SA exports4, and as such price fluctuta-
tions could be regarded as having a significant impact on currency valuation.
This, in turn, might significantly impact the price setting mechanisms in the
economy, which we test formally in this paper. We thus test whether two
key precious metal prices add to the forecasting power of general price levels
in the domestic economy.

Our approach to answering this question di↵ers from Chen et al. (2011)
in that we control for the dynamic nature of the co-movements between
the price series in our sample. We follow the methodology developed by
Della Corte, Sarno, and Tsiakas (2010) in using Bayesian techniques for the
estimation of parameters in our DCC model, which is used to estimate time-
varying co-dependence structures. Our methodological construct follows that
of Lombardi and Ravazzolo (2013), who study the ability of commodity prices
in forecasting equity market prices. The authors use bivariate Bayesian VAR

3Bernanke and Gertler (2001) suggests, however, that authorities could respond if such
price changes reflect changes in forward inflationary expectations.

4According to the Preliminary Statement of Trade Statistics, 2014.
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and bivariate Bayesian DCC models to estimate 1,2...24 step ahead point and
density forecasts for their studied returns series. They then compare these
fits to forecasts from a Random Walk model and Autoregressive model fits.
The point and density forecast estimates are then compared using statistical
test procedures discussed in Section 3. The authors’ findings suggest that the
models provide similar point estimates, but that the Bayesian DCC model
consistently provides better density forecasts for commodity prices accross
all the horizons tested. They thus conclude that controlling for time varia-
tion in the covariance matrix between the bivariate series pairs, significantly
improves density forecasts in their sample.

3. Methodological Discussion

The US Federal Reserve first examined the empirical relationship between
commodity price changes and US inflation, using bivariate VAR models (Fur-
long and Ingenito, 1996). Since then, our understanding of the shortcom-
ings of VAR models has grown, particularly as regards the pitfalls of over-
parameterization which could lead to poor results. Several Bayesian type
shrinkage techniques have since been introduced, including the Minnesota
prior of Doan, Litterman, and Sims (1984), which we will use in calculating
our comparative VAR and DCC estimates.5

In order to assess whether metals series provide useful information regard-
ing the forecasting of the inflation series for SA, we compare the forecasts of
the BVAR and B-DCC models to two benchmark models, the RW and AR
models, which have proven in the past to be hard-to-beat in out-of-sample
forecasting. As they are both nested in the BVAR model (albeit without
the need for Bayesian parameter estimation), we do not discuss these models
below.

Our first model that we will use to compare relative to the benchmarks
inflation forecasts, is the bivariate Bayesian Vector Autoregressive (BVAR)
model. It takes the following form:

yt = c+B(L)yt�1 + et, et ⇠ N(0,�) (1)

where yt is a 2 ⇥ 1 vector for inflation relative to gold and platinum prices,
respectively. The errors are also assumed normally distributed with bivariate

5c.f. Korobilis (2013) and Baumeister and Kilian (2012) who find that VAR forecasts
are significantly improved when using Bayesian shrinkage methods.
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covariance matrix �. We find an optimal lag structure of 7 for the inflation
model, using the AIC information criterion. This implies that we use for
all our BVAR estimates an optimal lag structure of 7, as the BVARs use a
prior distribution (discussed below) which matches the in-sample fit of the
AR(7) model. The BVAR(7) model is then estimated by setting the priors
according to the procedure developed by Litterman (1986), and extended
by Kadiyala and Karlsson (1997). This essentially implies using a Minnesota
prior, whereby the VAR equations are e↵ectively “centered” around a random
walk with drift. As discussed in Kadiyala and Karlsson (1997), this approach
e↵ectively shrinks the diagonal elements of B1 in equation 1 toward unity,
and the other parameters to zero. The prior specification also incorporates
the belief that autoregressive lags should outweigh other variables’ lags, as
well as more recent lags are assumed to outweigh that of earlier lags. The
moments for the prior distributions of the coe�cients can thus be represented
as follows:

E[(Bk)ij] =

⇢
�i j = i, k = 1;
0, otherwise

�
(2)

�[(Bk)ij] =

(
�2

k2 , j = 1;

#.�
2

k2 .
�2
i

�2
j
, otherwise

)
. (3)

Here the coe�cients are assumed a priori independently and identically
distributed. As the variables are all made stationary by di↵erencing, the
prior on the mean is also zero on the first own lag and not unity. We also
set �i equal to zero to reflect the mean reverting data. Also, the covariance
matrix is assumed diagonal and fixed, with ⌃ = diag(�2

i , �
2
j ), and the in-

tercept prior assumed di↵use. � can be thought of as how close the prior
distribution is to that of the random walk, and thus reflects the importance
of prior beliefs to information gleaned from the data. The optimal �’s in our
estimations were 0.2486 for gold and 0.3959 for the platinum series.6 We set
it such that the average in-sample fit of the bivariate BVARs, with gold and
platinum inputs, have the same fit as the AR(7) model of inflation. 1/k2 is
the rate at which prior variance decreases as lags decrease, and # 2 (0, 1)
governs the relative importance of more recent lags. Similar to Bańbura et al.
(2010), which we set # equal to unity to impose a normal inverted Wishart

6The higher the value of �, the closer the posterior would be to the OLS estimates. A
smaller value implies the observed data influences the posterior distribution less.
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prior. Lastly, the ratio of variances, �2
i /�

2
j , in equation 3 accounts for scale

and variability in the data (our notation follows that of Bańbura, Giannone,
and Reichlin (2010) who provide a deeper discussion of the Bayesian VAR
approach).

Next we model the bivariate dynamic structure of correlations between
inflation and gold and platinum prices, respectively, by using the Dynamic
Conditional Correlation (DCC) model extension, developed by Engle (2002),
to the B-VAR model described earlier. This model o↵ers a flexible and
parsimonious approach to extract time-varying correlations between series.
The DCC model extension to the BVAR(7) model describing inflation, yt,
can be written as follows:7

yt = c+B(L)yt�1 + et (4)

et = H
1/2
t zt; zt ⇠ N(0, IN) & Ht = DtRtDt

D2
t = diag(�1,t, . . . , �N,t)

�2
i,t = �i + i,tv

2
i,t�1 + ⌘i�

2
i,t�1, 8i

Rt,i,j = diag(Qt,i,j)
�1Qt,i,j diag(Qt,i,j)

�1

Qt,i,j = (1� ↵� �)Q̄+ ↵ztz
0
t + �Qt,i,j

Ht is the conditional covariance matrix, and zt the standard normal distur-
bances. Also, �i,t is the univariate volatility model for each series i.8 Qt,i,j

is the unconditional covariance structure and Rt,i,j the dynamic conditional
correlation estimates between i and j. In our estimation we use only bivariate
pairs, thus N = 2, and therefore the parameters ↵ and � reduce to scalars.
For all our estimations, the following necessary conditions for positive semi-
definiteness hold: ↵ > 0, � > 0 and ↵ + � < 1. Engle (2002) also suggests

7Refer to Bauwens et al. (2006) for a detailed discussion on multivariate GARCH model
extensions, including the DCC model.

8Consistent with most of the literature and to simplify our estimations, we use
GARCH(1,1) models for each of the univariate specifications. All parameters are sig-
nificant and the constraints on the parameters are met. Results are omitted for brevity.
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specifying a log-likelihood for the model in 4 defined as:

ln(L) = �1

2

TX

t�1

⇥
N ln(2⇡) + 2 ln|Dt|+ e0tD

�1
t D�1

t et

� "t"
0
t + ln|Rt,i,j|+ "0tR

�1
t,i,j"t

⇤
(5)

We then perform Bayesian estimation of the DCC model parameters to over-
come one of the major drawbacks of this approach, its static correlation
structure. This is done using the Metropolis Hastings algorithm for estimat-
ing the DCC parameters, similar to that suggested by Della Corte, Sarno,
and Tsiakas (2010).9

After fitting both the BVAR and BVAR-BDCC GARCH models, we pro-
ceed to generate point and density inflation forecasts. We compute h =
1, 2, ..., 24 step ahead monthly forecasts for each of the models discussed on
an iterative basis, in order to compare it to RW and AR forecasts. The
comparisons are made based on the following statistics. Firstly, we compare
the point forecast estimates using the familiar Root Mean Squared Error
(RMSE) statistic, which is given as:

RMSEk,h =

vuut
t̄�hX

t=
¯
t

(yt+h,h � eyt+h,k)2

t⇤
(6)

where t⇤ = t̄� h+
¯
t+ 1,

¯
t is the beginning and t̄ the end of the forecasting

period, and eyt and yt the forecast and true values, respectively. Using this
measure, we can assess which model provides the best point forecast estimate.

We also compare density forecasts using the Logarithmic Score statistic,
LS, as discussed in detail in Mitchell and Hall (2005, 2007). The usefulness of
evaluating density forecassts in addition to point estimates has been outlined
by Tay and Wallis (2000), who argue that density measures allows for a full
impression of the uncertainty associated with forecasts. In our analysis, it
provides an estimate of the probability distribution of future values for infla-
tion as predicted by each model. Following the discussion in Mitchell and Hall

9For a detailed discussion of the Bayesian DCC approach, the reader is referred to
Della Corte et al. (2010), while Lombardi and Ravazzolo (2013) provides a good concise
overview of this approach in their appendix.
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(2005), density forecasts can be combined using “optimal” weights. These
optimal weights minimize the distance between canditate model k ’s com-
bined density forecasts, p(eyk,T+1|y1:t), and the true densities, p(yk,T+1|y1:t),
which are unknown. In doing so, the Kullback-Leibler Information Criterion
(KLIC) measure is used to obtain these optimal weights for model k, which
minimize the distance between the combined and true densities (Mitchell and
Hall, 2007, p.4):

KLICk,t+h =

Z
p(yt+h|y1:t) ln

p(yt+h|y1:t)
p(eyt+h|y1:t)

(7)

KLICk,t+h = Et {(ln p(yt+h|y1:t)� ln p(eyt+h|y1:t)} (8)

where Et = E(.|Ft) is the conditional expectation given information set Ft.
The smaller the distance in 8, the closer the density forecast of model k is
to the “true density”. It then follows that under some regularity conditions,
the criterion can be rewritten as10:

KLICk,t+h =
1

t⇤

t̄�hX

t=
¯
t

(ln p(yt+h|y1:t)� ln p(eyt+h|y1:t)) (9)

where t⇤ corresponds to our out-of-sample range discussed in Section 5, and
the sample statistic, 1

t⇤

P
(.), is used as an unbiased estimate of Et. Intu-

itively, the KLIC statistic thus chooses the model which, on average, gives
the highest probability to the events which occured (or the model having the
highest posterior probability). Minimizing the KLIC statistic, is equivalent
to maximizing the second part of equation 9, which is the Logarithmic Score
statistic. This follows as the “true” density is not observable, yet we need
not know lnp(yt+h|y1:t) in order to compare two models’ density forecast fits,
as it would be relative to the same “true” density. Thus, we have:

LSk = � 1

t⇤

t̄�hX

t=
¯
t

ln p(eyt+h|y1:t) (10)

In order to assess the significance of the model performance in our out-of-
sample point forecast estimates, we use Diebold and Mariano (1995)’s (DM)

10C.f. Mitchell and Hall (2007, p. 4). Here we follow the notation of Lombardi and
Ravazzolo (2012)
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test. The test evaluates the null hypothesis of equal forecasting accuracy of
each bivariate model pair compared to the alternative that one of the models
outperformed the other in terms of forecasting accuracy. We use the small
sample adjusted version of the DM test, as suggested by Harvey, Leybourne,
and Newbold (1997), which is a pairwise test that adjusts the DM, and is
defined as follows:

E[di,t] = E[⇤w
1,t � ⇤w

2,t] = 0 (11)

and then following Harvey et al. (1997), we adjust it as follows:

Adjusted DM =

✓
t⇤ + 1� 2h+ t⇤�1h(h� 1)

t⇤

◆1/2

V̂ (d̄i
�1/2)d̄i (12)

where ⇤w
i,t = yt � eyi,t is the weighted loss function as described in Dijk and

Franses (2003), h being the forecast horizon, and V̂ (d̄i
�1/2) the estimated

variance of series di,t. The Adjusted DM test statistic is then compared
to critical values from the t-distribution with degrees of freedom t⇤ � 1.
In the adjusted DM above, we use Newey-West HAC consistent variance
estimators. The Bandwidth for the Newey-West estimator is then selected
using Andrews’ (1991) automatic bandwidth selector.11

In order to compare model significance in terms of density forecasts, we
follow a similar yet somewhat adjusted approach to the above, as outlined in
Mitchell and Hall (2005). The null hypothesis of equal density forecast is:

E[di,t] = 0 ) KLIC = 0 (13)

with the sample mean d̄ defined as (Mitchell and Hall, 2005, p.1004):

d̄ = KLIC =
1

t⇤

t̄�hX

t=
¯
t

[ln pt(z1t)
⇤ � ln�(z⇤1t)] (14)

with z1t =
R yt
�1 gu(u)du, and z⇤1t = ��1z1t, where �(·) is the standard normal

density function and � the c.d.f of the standard normal. As noted in Mitchell

11For details, see: Andrews, D. W. (1991). Heteroskedasticity and autocorrelation con-
sistent covariance matrix estimation. Econometrica: Journal of the Econometric Society,
817-858.
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and Hall (2005), testing for the departure of {z1t}t
⇤
t=1 from i.i.d N(0, 1)12 is

equivalent to testing the departure of the forecasted density from the true
density, p(yt+h|y1:t), as defined earlier.

In order to test equation 14, we follow Mitchell and Hall (2005) in using
the central limit theorem and, under appropriate assumtions, testing the
distribution:

p
t⇤(d̄� E(dt)) ! N(0,⌦) (15)

where the general representation for the covariance matrix, ⌦, is given in
West (1996), and reduces to the long run covariance matrix, Sd. This is,
in turn, associated with dt in that it is 2⇡ times the spectral density of
dt � E(dt) at zero frequency (Mitchell and Hall, 2005).13 This test then
reduces to the small sample corrected and HAC robust DM test if dt tested
for point error forecasts. As argued in Mitchell and Hall (2005), such testing
for the significance of departures of z⇤1t from N(0, 1), is both easier and more
sensible than testing the distance of density forecasts as defined in equation
9.

The results of both the point and density forecast tests are reported in
Table A.4 and discussed in Section 5.

4. Data

In this study we use monthly data for the period 1968M2 to 2013M12,
for SA inflation (CPI) as well as gold and platinum price indexes. Our data
for CPI inflation was obtained from the Global Financial database, while the
platinum and gold price series were obtained from www.kitco.com. We used
the dollar prices for both gold and platinum, firstly as these metals are traded
globally in dollars, and secondly in order to avoid exchange rate e↵ects on
inflation in our estimates. Table A.1 shows the descriptive statistics of the
returns to each of the series14, and figure B.1 graphs the month-on-month
inflation and continuously compounded returns for the gold- and platinum
series. From both Table A.1 and figure B.1 it is clear that platinum prices

12Which is, in turn, equivalent to testing z1t’s departure from i.i.d. U(0, 1)
13More details of estimating Sd follows in Mitchell and Hall (2005, p. 1004 - 1005).
14For each price index, we use the first di↵erence of the logarithmic transformation to

achieve stationarity.
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show the greatest variability, while both metals series show far more price
variability than prices on aggregate.

Also, all the price returns series reject the null of normality, and display
excess kurtosis and skewness. Finally, all three series show logarithmically
di↵erenced stationarity, as can be seen from the Augmented Dickey-Fuller
(ADF) and Philips-Perron (PP) tests contained in the appendix (see Table
A.2). Although less convincing for inflation using the standard ADF test,
the PP test indeed shows clear evidence of stationarity.

Figure B.2 in the appendix compares the bivariate Bayesian Dynamic
Conditional Correlations (B-DCC) between inflation and the respective met-
als price series, relative to their unconditional sample correlation. From the
figures it is clear that the unconditional estimates for both are consistently
lower than for the dynamic estimates. We also note from these figures that
the correlation between the inflation series and the metals returns series typ-
ically display relatively muted and positive correlations. As such, we require
the point and density forecast evaluation results to be able to infer whether
metals price series should indeed be considered as important inputs to infla-
tion forecasts.

5. Results

Table A.3 shows both the point and density out-of-sample forecast accu-
racy tests for the B-VAR and BVAR B-DCC models discussed in Section 3.
The period considered ranges from 2000M01 – 2013m12, which corresponds
to the period of inflation targeting.

From Table A.3, it is clear that the results for the point forecasts suggest
that the AR(7) model is particularly di�cult to improve upon. This is con-
sistent with the findings of Lombardi and Ravazzolo (2012) and most other
studies that similarly have di�culty in finding more accurate point estimates
than the autoregressive models. Table A.4 confirms the significance of the
out performance relative to both BDCC estimates, using gold and platinum
as bivariate inputs, in terms of point forecasts.

Nonetheless, as argued in Section 3, we should be more interested in the
ability of models to provide accurate density forecast estimates. This follows
as it is a more holistic approach to assessing the model’s ability to predict
future price movements. The LS statistic in Table A.3, in contrast to the
findings for point forecasts, shows that the B-DCC models consistently pro-
vide improved density forecasts of inflation at every horizon versus all the
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other models. Also, the B-VAR for both metals series also provide improved
density forecasts versus the RW and AR(7) benchmarks. Collectively, this
implies that at all horizons we see that controlling for dynamic correlations,
using BDCC extensions to the BVAR model, improves density forecasts. We
also deduce that metals price series contain information which improves in-
flation forecasting power at all horizons as well. The improvement from the
BVAR as a result of the addition of BDCC estimates, are more significant as
the forward horizon increases, as can be seen from Table A.4. For all density
forecast horizons we see that the BDCC models provide significantly more
accurate estimates than the RW model, while for most AR(7) horizons the
tests suggest significant improvements at longer horizons.

Our results can then be summarized as follows. Firstly, metals price se-
ries, proxied for by gold and platinum prices, provide useful information in
order to improve density forecasts of inflation based solely on past inflation
information. Secondly, improving point forecast estimates from naive mod-
els remain an elusive, albeit less informative, exercise. Lastly, we see that
controlling for the dynamic relationship between inflation and other price
series used as model inputs, leads to statistically significant improvements in
density forecasts.

6. Conclusion

This paper studies the dynamic relationship between inflation and metals
price series for South Africa, for the period 1968 – 2013. It tests two hypothe-
ses. First, whether metals series provide useful information in the point and
density out-of-sample forecasting of inflation for the period since adopting
inflation targeting. Secondly, we test whether controlling for the dynamic
conditional co-movements between the bivariate pairs of price series yields
improved forecasting perfomance. This is done using a bivariate Bayesian
VAR Bayesian DCC-GARCH model, and comparing the out-of-sample fore-
casting performances at various horizons. To achieve this, we make use of
the RMSE statistics for point forecast estimates, the Log-Score statistic for
density forecasts and a modified version of the Diebold and Mariano (1995)
test and the Mitchell and Hall (2005) test to evaluate the statistical signifi-
cance of model forecast out-performance for both point and density forecasts,
respectively.
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Our findings can be summarized as follows. We find that improving point
forecasts of naive Random Walk and Autoregressive models for the inflation
series, using our dynamic model estimates, remain an elusive exercise. This,
we argue, is of less importance relative to the more informative density fore-
casts, for which we find significantly improved forecasts of inflation for both
the BVAR and BDCC models over the naive benchmarks. Particularly, we
find that controlling for dynamic correlations between the series leads to su-
perior density forecasts at all horizons. This allows us to make several conclu-
sions. Firstly, that including metals price series as inputs to inflation models
leads to improved density forecasts. Secondly, controlling for the dynamic
relationship between the included price series and inflation similarly leads
to significantly improved forecasts. This implies that forecasters should con-
sider the importance of metals series in describing the movements of prices
in South Africa, while advanced models studying future price movements
should ideally control for the dynamic relationships of the series considered.
Our Bayesian estimates allow the dynamic structure of correlation to be more
flexible and adjustable relative to the standard DCC estimates typically used
in the literature.
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Appendix A. Tables

Table A.1: Descriptive Statistics of the returns series

Inflation Gold Platinum

Mean 0.739599 0.644396 0.33376
Median 0.654025 0.126296 0.20334
Maximum 4.211154 39.46875 28.47158
Minimum -0.74219 -18.3862 -29.2945
Std. Dev. 0.637043 4.924338 6.301847
Skewness 1.107125 1.256602 0.28834
Kurtosis 5.768518 11.20655 6.555835

Jarque-Bera 288.5311 1691.196 297.9193
Probability 0.000 0.000 0.000

Observations 551 551 551
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Table A.2: Tests for Unit Roots

Inflation t-Statistic Prob.

Augmented Dickey-Fuller test statistic -2.774 0.0628
Test critical values: 1% level -3.442

5% level -2.867
10% level -2.57

Gold Returns t-Statistic Prob.

Augmented Dickey-Fuller test statistic -15.97 0.000
Test critical values: 1% level -3.442

5% level -2.867
10% level -2.57

Platinum Returns t-Statistic Prob.

Augmented Dickey-Fuller test statistic -18.26 0.000
Test critical values: 1% level -3.442

5% level -2.867
10% level -2.57

Inflation Adj. t-Statistic Prob.

Phillips-Perron test statistic -22.89 0.000
Test critical values: 1% level -3.442

5% level -2.867
10% level -2.57

Gold Returns Adj. t-Statistic Prob.

Phillips-Perron test statistic -17.51 0.000
Test critical values: 1% level -3.442

5% level -2.867
10% level -2.57

Platinum Returns Adj. t-Statistic Prob.

Phillips-Perron test statistic -18.22 0.000
Test critical values: 1% level -3.442

5% level -2.867
10% level -2.57

Both the Aumented Dickey-Fuller and Phillips-Perron tests use
MacKinnon’s (1996) one-sided p-values. The latter test also
employs the Newey-West automatic bandwidth selector and
Bartletts’s kernel.



Table A.3: Forecast Comparisons using RMSE and Logarithmic Score Tests

h=1

1

RW AR B-DCC Gold B-DCC Plat BVAR Gold BVAR Plat
RMSE

2 0.5356 0.4722 0.4875 0.4719 0.4804 0.4667
LS

3 -0.9524 -0.7355 -0.7155 -0.71 -0.7293 -0.7128
h=3

RW AR B-DCC Gold B-DCC Plat BVAR Gold BVAR Plat
RMSE 0.5940 0.4869 0.5004 0.5038 0.4938 0.4886
LS -1.3876 -0.7619 -0.7417 -0.7471 -0.7558 -0.7508

h=6

RW AR B-DCC Gold B-DCC Plat BVAR Gold BVAR Plat
RMSE 0.5721 0.5091 0.5231 0.5211 0.5135 0.5105
LS -1.6938 -0.7982 -0.7641 -0.7705 -0.7871 -0.7857

h=12

RW AR B-DCC Gold B-DCC Plat BVAR Gold BVAR Plat
RMSE 0.5605 0.5407 0.5542 0.5548 0.5419 0.5427
LS -2.0181 -0.8344 -0.7678 -0.7666 -0.8177 -0.8186

h=24

RW AR B-DCC Gold B-DCC Plat BVAR Gold BVAR Plat
RMSE 0.5551 0.5232 0.5427 0.5421 0.5230 0.5235
LS -2.3539 -0.8791 -0.8171 -0.8087 -0.8754 -0.8749

1 h indicates the forecast horizon. For brevity we include only some of the forecast
horizons, with the other estimates available from the authors upon request, although
they do not change the results in any way.

2 RMSE is the Root Mean Square Error for point forecasts. A lower statistic indicates
a better point forecast.

3 LS is the log score statistic for density forecasts. A higher LS statistic means better
density coverage.
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Table A.4: Point and Density Forecast Accuracy

Gold point forecasts1

horizon RW vs. BDCC AR vs. BDCC BDCC vs. BVAR
1 1.149 -2.429** 2.139**
3 2.175** -1.584 1.524
6 1.291 -1.797* 2.567**
12 0.135 -3.544*** 3.313***
24 0.214 -4.216*** 4.249***

Gold density forecasts2

horizon RW vs. BDCC AR vs. BDCC BDCC vs. BVAR
1 -3.949*** -0.232 0.061
3 -9.286*** -0.46 0.328
6 -10.999*** -1.141 1.137
12 -12.844*** -2.883*** 2.901***
24 -35.826*** -1.851* 1.604

Platinum point forecasts

horizon RW vs. BDCC AR vs. BDCC BDCC vs. BVAR
1 1.611 0.052 1.56
3 2.205** -3.208*** 3.747***
6 1.343 -2.104** 2.146**
12 0.12 -3.493*** 3.427***
24 0.222 -2.880*** 2.916***

Platinum density forecasts

horizon RW vs. BDCC AR vs. BDCC BDCC vs. BVAR
1 -4.723*** -0.605 -0.271
3 -9.703*** -0.448 0.032
6 -11.122*** -1.216 0.904
12 -12.480*** -2.789*** 2.942***
24 -35.687*** -1.942* 1.696*

1 The adjusted Diebold-Mariano (DM) test is used for the point forecast evalua-
tion. A positive and significant value implies model 2 provides a signficantly
better forecast, and vice versa.

2 The Mitchell and Hall (2005) test is used for density forecast evaluation. A neg-

ative and significant value implies model 2 provides significantly better density
forecast.
*, *, and *** denote significance at 10%, 5% and 1%, respectively.



Appendix B. Figures

Figure B.1: Month-on-month Inflation, Gold and Platinum returns
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Figure B.2: Bivariate Bayesian DCC estimates
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