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Abstract

In this paper we set out to date-stamp periods of US housing price explo-
sivity for the period 1830 – 2013. We make use of several robust techniques
that allow us to identify such periods by determining when prices start to
exhibit explosivity with respect to its past behaviour and when it recedes
to long term stable prices. The first technique used is the Generalized sup
ADF (GSADF) test procedure developed by Phillips, Shi, and Yu (2013),
which allows the recursive identification of multiple periods of price explo-
sivity. The second approach makes use of Robinson (1994)’s test statistic,
comparing the null of a unit root process against the alternative of specified
orders of fractional integration. Our analysis date-stamps several periods of
US house price explosivity, allowing us to contextualize its historic relevance.

Keywords:

GSADF, Bubble, Structural Breaks, Random Walk, Explosivity
JEL: C22, G15, G14

1. Introduction

The steep rise and subsequent fall of US house prices in the late 2000s have
been the subject of much debate over the last few years. This follows largely
from its role as underlying asset class to many of the derivative instruments
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that contributed to the unprecedented downward spiral of the fragile global
financial system in 2008. Most economists agree that the housing market
in the US, and in several other countries globally, for a myriad of reasons,
experienced historically unprecedented asset price bubbles leading up to the
global financial crisis. This made the market for mortgages especially attrac-
tive to home buyers and lenders alike, reinforcing the rapidly rising house
prices and contributing to a booming industry destined for a reversal.

Property markets and residential houses, in particular, constitute a key
asset class to the portfolio of most households worldwide. Abrupt movements
of house prices, therefore, have a very real impact on households’ abilities
to consume and save. This in turn significantly impacts the economy’s pro-
duction and job creation capacity. As such, policies that curb unstable and
bubble-like expansions in prices of houses in the economy could be considered
a core policy objective, as sharp and sudden corrections in such prices could
dramatically impact general price stability in the economy.

Since Shiller (1980) introduced the idea that prices of assets could deviate
significantly from their underlying fundamentals (however defined), a large
literature has emerged that aims to explain, document and even suggest pre-
ventions for asset price bubble formations. Although some e�cient market
proponents dismiss such notions, most accept that high transaction costs and
limits to short selling could indeed lead to prices diverging from fundamental
levels. As noted in Glaeser, Gyourko, and Saiz (2008), e.g., such market
failures that hamper the ability of markets to correct price ine�ciencies is
particularly applicable to housing markets, where transaction costs are very
high and short selling exceptionally di�cult. This implies periods of price in-
e�ciencies, and in particular periods of bubble-like behaviour, could feasibly
exist with relatively little scope for arbitrage.

Our aim in this paper is to identify periods of bubble-like house price ex-
pansions over the last two centuries for the US market. This will serve to put
the most recent bubble episode into historical perspective, and shed light on
past price trends. The key research question is how to tell when rapidly rising
house prices constitute a bubble. Case and Shiller (2003) defines a housing
bubble as being driven by home buyers who are willing to pay inflated prices
for houses due to their expectations that houses will keep experiencing un-
realistic appreciation in the future. This notion might be based on high
expected returns, with the “dividend” portion of holding the asset being the
value of residing in the residence (or the rental income earned), with the cap-
ital gain the expected rising price of the home. In fact, both can be expected
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to experience periods of rapidly rising prices in the short run, which can fuel
the demand for home-buyers and mortgage originators alike, as the value of
the underlying asset rises. But, as seen in the US market in 2007, external
factors might lead to costly corrections with very real economic impacts felt
across income divides. Indeed, house prices may also experience such costly
corrections as a result of deteriorating macroeconomic factors even though
it might not have experienced a rapid increase before, or equivalently expe-
rience a gradual downward correction with little or no noticeable real costs.
Our objective is not to estimate the costs or consequences of these periods
of explosive price build-ups, but merely to document and contextualize their
historic occurrences.

Our first challenge is identifying a fundamental level for house prices. As
we face a lack of historical data on measures that have prviously been used
to define such a level for house prices (including rental prices, construction
costs and gross margins to home builders, as suggested by, among others,
Himmelberg, Mayer, and Sinai (2005) and Glaeser et al. (2008))1, we use
another broad measure to define a level to which prices converge. Our premise
is that house price movements tend, in the long run, to display stationary
behaviour relative to broad price movements in the economy. We thus label
periods of positive deviations from such stationarity for sustained periods
as episodes of price explosivity. This can be motivated conceptually that
during periods where house prices rise at a significantly higher rate than
general prices in the economy, we can feasibly expect it to be experiencing
inflationary pressures resembling explosive behaviour.

We then make use of two robust and e�cient techniques that allow us to
date-stamp periods of explosivity of these measures. The first technique that
we will use is the Generalized sup ADF (GSADF) test procedure developed
by Phillips, Shi, and Yu (2013), which is a recursive right-tailed unit root
testing procedure that allows the identification of multiple periods of price
explosivity. The second approach makes use of Robinson (1994)’s test of
unit roots against the alternative of specified orders of fractional integration.
We use the approach developed by Balcilar, Ozdemir, and Cakan (2015),
which extends Robinson (1994)’s test statistic, to allow the identification
of multiple periods of deviations from unit root behaviour in the presence

1We also do not directly account for di↵erent interest rate regimes, as our focus remains
on the historical time-series behaviour of house prices.
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of multiple endogenously determined structural breaks at unknown dates.
This approach also provides the added benefit of testing a broader range of
persistence than that which is measured using the unit root alternative in the
first test. Using these techniques, we identify several periods of explosivity
for real US house prices. We also find that unit roots exists for the full sample
even when controlling for the existence of structural breaks, validating the
first approach.

Our paper is structured as follows: section 2 discusses literature relevant
to our study. Thereafter, section 3 outlines the methodologies used to identify
periods of explosivity of US house prices, while section 4 describes the data
used in the study. Section 5 discusses our findings, while section 6 concludes
our study.

2. Review of relevant literature

Accurately documenting the inflationary build up of asset prices has long
interested economists and policy makers alike. A vast literature has emerged
that have tried to identify and explain the occurence of asset price bubbles,
leading to often divergent views on suitable policy responses following its
potential detection (c.f. Gürkaynak (2008) for an in-depth discussion of the
performance of various bubble detection techniques). Often the di�culty in
testing for the presence of bubble-like behavior in asset price series lie in
correctly identifying and date-stamping multiple periods of explosivity. Tra-
ditional unit root and co-interation tests aimed at identifying such periods
(as e.g. proposed by Diba and Grossman (1988)), fail to identify the exis-
tence of bubbles that periodically collapse. Evans (1991), e.g., points out
that ordinary stationarity tests remain exposed to the possibility of identi-
fying psuedo stationary behaviour when a series in fact displays periodically
collapsing bubbles.

Various techniques have been proposed that allow the detection of mul-
tiple periods of collapsing speculative bubble in asset prices. Al-Anaswah
and Wilfling (2011) and Lammerding, Stephan, Trede, and Wilfling (2013),
e.g., use Markov-switching models to di↵erentiate between regimes of price
stability and price explosivity (the latter authors also use a robust Bayesian
estimation procedure). Another class of techniques use a sequential unit root
testing procedure developed by Phillips and Yu (2011) and Phillips, Wu, and
Yu (2011), which built on the indirect stationarity tests suggested by Diba
and Grossman (1984) and Hamilton and Whiteman (1985). As noted by
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Bettendorf and Chen (2013), the key advantage of sequential identification
procedures, particularly relevant to our analysis, is that it detects periods
of explosivity despite potential misspecifications of the market fundamen-
tal process. In this study, we will make use of the generalized version of
the sequential ADF tests, developed by Phillips, Shi, and Yu (2013) (PSY
hereafter), which is robust to the identification of multiple collapsing bubble
episodes. It has since gained ground in its broad empirical applications (c.f.
inter alia Bettendorf and Chen (2013); Etienne, Irwin, and Garcia (2014);
Caspi, Katzke, and Gupta (2015)) and allows consistent date-stamping for
the origination and termination of multiple asset price bubbles.

A key challenge when using PSY’s approach to identify asset price bub-
bles, is specifying the true definition of a fundamental level from which prices
deviate. Typically, the return to holding the asset, in the form of dividend
yields for equities (c.f. PSY, (2013)) and the convenience yield for com-
modities (c.f. Pindyck (1993); Lammerding et al. (2013); Gilbert (2010);
Shi and Arora (2012)), is first defined in a pricing equation. Then a bubble
component is specified, which, at times, displays explosive behaviour. Al-
though several papers critique this identification of bubble components (e.g.
Cochrane (2009); Pástor and Veronesi (2006); Cooper (2010) o↵er critical
discussions on this), explosive or mildly explosive behaviour in asset price
series indicate market exuberance during the inflationary phase of a bub-
ble, a feature that can be uncovered from recursive testing procedures on
time-series data (Phillips et al., 2013; Phillips and Magdalinos, 2007).

Caspi, Katzke, and Gupta (2015) also use the GSADF approach to iden-
tify periods where oil prices deviate from the general price level in the US, as
well as levels of oil inventory supplies, respectively. Their use of these mea-
sures as proxies for the fundamental price of oil follow from a similar lack of
data on historical oil price derivatives used to calculate the convenience yield.
Instead, they study periods where the nominal price of oil displays periods
of significant build-up relative to the general price level and stock of US oil
supply, which both act as credible alternatives to the standard convenience
yield.

The second approach that we will use in this study to identify periods
of explosivity tests the null of a unit root process against the alternative of
fractionally integrated orders which exceed one. Several studies have in the
past used a long memory process to test for explosivity in asset price series
using a test statistic developed by Robinson (1994) (e.g. Cuñado, Gil-Alana,
and Gracia (2007); Gil-Alana (2003, 2008); Balcilar, Ozdemir, and Cakan
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(2015). A key consideration in defining explosive periods are controlling for
structural breaks, which, as highlighted by Perron (1989), may lead to the
non-rejection of the unit-root hypothesis. Gil-Alana (2003) assumed known
structural break dates in their analysis, while Gil-Alana (2008) employed a
residuals sum squared approach where a single structural break date was
allowed at an unknown time. Our approach follows that of Balcilar et al.
(2015) in allowing multiple structural breaks at unknown dates. We then
use Robinson (1994)’s LM test statistic to determine the fractional order
of integration of the US house price series after controlling for endogenously
determined level and trend shifts. We then recursively identify periods where
the lower bound of the fractional order exceeds unity, and subsequently return
to levels below unity, to allow us to identify explosive periods equivalent to
those determined using PSY, (2013)’s GSADF approach. Both approaches
are robust to multiple periods of periodically collapsing bubbles, less sensitive
to the specific definition of the underlying fundamental process and able to
provide recursive date-stamping of explosive periods in the underlying data.

Although not unique in its application to house price data2, our long
dated scope as well as our application of the techniques used in this paper
to the housing bubble literature, is novel.

3. Methodological Discussion

The first technique that we use to label episodes of price explosivity builds
on the work pioneered by Phillips and Yu (2011) and Phillips, Wu, and Yu
(2011), and in particular the generalized form of the sup ADF (GSADF)
proposed by Phillips, Shi, and Yu (2013). This method uses a flexible moving
sample test procedure to consistently and e�ciently detect and date-stamp
periods where a price series displays a root exceeding unity. Bubbles are so
identified in a consistent manner with false identifications seldom given even
in modest sample sizes.3 The test procedure suggested by PSY recursively
implements an ADF-type regression test using a rolling window procedure.
Suppose the rolling interval begins with a fraction r

1

and ends with a fraction

2Bourassa et al. (2001) provides a list of early studies on house price bubbles, with
other notable studies including Case and Shiller (2003); Himmelberg et al. (2005); Glaeser
et al. (2008), among many others.

3See PSY, (2013) for a deeper discussion and Monte-Carlo estimations testing the
e�cacy of this identification procedure.
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r
2

, with the size of the window given as rw = r
2

� r
1

. Then, let:

yt = µ+ �.yt�1

+
pX

i=1

�i
rw�.yt�i + ✏t (1)

where µ, � and � are parameters estimated using OLS. We then test null of
H

0

: � = 1 against the right sided alternative H
1

: � > 1. The number of
observations used in equation 1 is then Tw = [rwT ], where [.] is the integer
part. The ADF statistic corresponding to equation 1 is thus denoted by
ADF r2

r1 .
Building on this approach, PSY formulated a backward sup ADF test

where the end point of the subsample remains fixed at a fraction r
2

of the
entire sample, with the window size expanding from an initial fraction r

0

to
r
2

. This backward sup ADF (SADF) procedure can thus be defined as:

SADFr2(r0) = supr12[0,r2�r0]ADF r2
r1 (2)

PSY then suggested repeatedly implementing the SADF procedure of equa-
tion 2 for each r

2

2 [r
0

, 1], leading to a generalized form (GSADF) written
as:

GSADF (r
0

) = supr22[r0,1]SADFr2(r0) (3)

The supremum form of the recursively estimated ADF is motivated by the
observation that asset price bubbles generally collapse periodically.4 In this
scenario, the sup ADF test delivers e�cient bubble detection capabilities
where one or two bubbles emerge, with the generalized form performing well
even in the presence of multiple bubble episodes.

The initial minimum fraction in the SADF approach of equation 2, rw =
r
0

, is selected arbitrarily, keeping in mind the issue of estimation e�ciency.
Thereafter, we expand the sample window forward until rw = r

1

= 1, the full
sample, and we have a recursive estimate of ADF defined as ADFrk , 8k 2
(r

0

, r
1

). From the sequence of ADF statistics (SADF) so produced, we can
then identify the supremum value that can be used to test the null hypotheses
of unit root against its right-tailed (mildly explosive) alternative by compar-
ing it to its corresponding critical values. If the right tailed alternative to

4Evans (1991) pointed out that in samples with frequent bubble formations, conven-
tional unit root tests have limited bubble detection power
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the unit root null is thus accepted, we can infer mild explosivity of the series,
indicated by �r1,r2 .

The generalized form of this approach defined in equation 3, uses a vari-
able window width approach which allows both the starting and ending points
to change within a predefined range, [r

0

, 1]. This allows the identification of
multiple periods of explosivity and allows us to consistently date-stamp the
starting and ending points. The starting points are identified as the periods,
Tre , at which the backward sup ADF sequence crosses the corresponding
critical value from below. The corresponding ending point to an explosive
period is similarly defined as the period, Trf , where the backward sup ADF
sequence crosses the critical value point from above.

We can formally define identified periods of explosivity using the GSADF
approach as:

r̂e = inf
r22[r0,1]

�
r
2

: BSADFr2 > cv�T
r2

 

r̂f = inf
r22[r̂e,1]

�
r
2

: BSADFr2 > cv�T
r2

 
(4)

Where cv�T
r2 is the 100(1� �t)% critical value of the sup ADF statistic based

on [Tr2 ] observations. We also set �t to a constant value, 5%, as opposed to
letting �T ! 0 as T ! 0. The BSADF(r

0

) for r
2

2 [r
0

, 1] is the backward
sup ADF statistic that relates to the GSADF statistic by noting that:5

GSADF (r
0

) = sup
r22[r0,1]

{BSADFr2(r0)} (5)

The second approach that we use also tests the right tailed alternative to
a unit root null hypothesis, but unlike standard right-tailed tests, focuses on
the fractional order of integration. The approach that we follow is similar
to Balcilar et al. (2015), who built on the procedure developed by Robinson
(1994) in determining the fractional order of integration. They also allow for
the identification of multiple endogenously determined structural breaks in
the form of level and trend shifts at endogenously determined dates. The
identification approach is based on the procedure suggested by Gil-Alana
(2008) and built on the principles suggested in Bai and Perron (1998). Bal-
cilar et al. (2015) also construct statistical tests for the di↵erent orders of

5The recursive GSADF estimations were done using Caspi (2013)’s routine in Eviews.
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fractional integration for each regime, using Robinson (1994)’s LM test to
determine the most likely order of integration. To explain this procedure,
consider the following multiple regression form:

yt = �0zt + xt, 8t = 1, 2, ..., T (6)

where yt is the house price index series, � a k⇥ 1 vector of unknown param-
eters and zt a k⇥1 vector of observable variables, which includes a constant,
polynomials in time trends (t) and structural break dummies, depending on
the deterministic structure imposed. As noted in Balcilar et al. (2015), the
presence of such deterministic regressors does not a↵ect the limiting null and
local distribution of the Robinson test statistic.

We consider the general case where zt includes a constant, a linear time
trend andm = 2k level, as well as trend shift dummies,DLT tl

t,i = (DLtl
t,i, DT tl

t,i)
0

at the dates i = T tl
b,1, ..., T

tl
b,k. We then set DLtl

t,i = 1 if t > T tl
b,i and zero other-

wise, and also DT tl
t,i = t�T tl

b,i and zero otherwise. Here we will also follow the
notation of Balcilar et al. (2015) by defining Tk as the set of disjoint break
dates, Tk = {T tl

b,1, ..., T
tl
b,k}. We also define �0zt as follows:

�0zt = µ+ �.t+
kX

i=1

�
�iDLtl

t,i +⇥iDT tl
t,i

�
(7)

with the regressor errors, xt, assumed driven by the following process as:

(1� L)dxt = ut (8)

with L the lag operator, ut covariance stationary, integrated of order zero,
I(0), and having a spectral density function that is positive and finite at
zero frequency. Allowing for a fractional order of integration in equation 8,
implies that d can assume any value on the real line.

The model structure above is based on the least squares principle first
proposed by Bai and Perron (1998). The estimation is carried out as follows:
first, a grid of values for the fractional integration parameter, d, is chosen as,
e.g., d

0

= [0.00, 0.01, ..., 1.20]. The least squares estimates of µ, �,�i and ✓i in
equation 8 are then obtained for each k-partition of {T

1

, ..., Tk}, denoted as
{Tk}, by minimizing the sum of squared residuals in the d

0

di↵erence models.
This implies, minimizing the following residuals sum of squares (RSS):

TX

t=1

(1� L)d0
 
yt � µ� �.t�

kX

i=1

⇥
�i.DLtl

t,i +⇥iDT tl
t,i

⇤
2

!
(9)
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over all value of T
1

, ..., Tk, yielding the parameter estimates µ̂, �̂, �̂i and ✓̂i, 8i 2
[1, ...k], and also the break dates, {T̂k}. We also employ Schwarz’ (1978)
Bayesian information criterion (BIC) to select the number of breaks, k, prior
to running the procedure.6 We then calculate the test statistic of Robinson
(1994) for each value of d

0

in the grid, a procedure that can be summarized
as follows (following again the notation of Balcilar et al. (2015)).

In order to test the null hypothesis:

H
0

: d = d
0

(10)

Robinson (1994) developed the following score statistic:

r̂ =

"p
T

�̂2

#p
Ââ (11)

where

â = �2⇡

T

T�1X

j=l

 (�j)g(�j; ⌘); �̂2 =
2⇡

T

T�1X

j=1

g(�j; ⌘̂I(�j))

�j =
2⇡j

T
; I(�j) =

1

2⇡T

�����

TX

t=1

ûte
i�jt

�����

Â =
2

T

2

4
T�1X

j=1

 (�j) (�j)
0 �

T�1X

j=1

 (�j)⇠̂(�j)
0 ⇥
 

T�1X

j=1

⇠̂(�j)⇠̂(�j)
0

!�1

⇥
T�1X

j=1

x̂i(�j) (�j)
0

3

5

⇠̂(�j) =
�

�⌘
log(g(�j; ⌘̂);  (�j) = Re

⇢
�

��
log �(e�i�j ; �

0

)

�
(12)

with I(�j) the periodogram of ût. Parameter estimates for ⌘̂ are derived from
the Whittle Maximium Likelihood (WML) method:

⌘̂ = argmin⌘2⇤
2⇡

T

T�1X

j=1

g(�j; ⌘)I(�j) (13)

6The number of breaks is selected by minimizing the criterion: BIC(k) = ln[RSS(T̂k)
T�n ]+

2n ln(T )
T
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with g(�j; ⌘) the known function of the parametric spectral density of ut.
The model in equation 6 is completed by specifying a parametric form for
ut. In our analysis, we choose a general specification for ut nested within an
Autoregressive Moving Average (ARMA) model. This implies that by defini-
tion that xt is characterized by a fractionally integrated ARMA (ARFIMA)
model, which is a commonly used parametric specification for measuring long
memory. The ARMA(p, q) model is denoted as:

�(L)ut =  (L)"t

while the ARFIMA(p, d, q) model for xt can be written as:

�(L)(1� L)dxt =  (L)"t (14)

where "t is a white noise process with variance, �2, and �(L) = 1�
Pp

j=1

�jL
j

and  (L) = 1 �
Pq

j=1

 jL
j are polynomials in the lag operator L, with

degrees of freedom p and q respectively. Furthermore, we assume that �(Z)
and  (Z) share no common roots and �(Z) 6= 0 and  (Z) 6= 0, 8Z  1. The
spectral density functions of these models, respectively, are given by:

f(�; �2, ⌘) =
�2

2⇡

����
 (e�i�

�(e�i�

���� , ⇡ < �  ⇡ (15)

and

f(�; �2, ⌘) =
�2

2⇡

����
 (e�i�

�(e�i�

����
2 ��1� e�i�

���2d
, ⇡ < �  ⇡ (16)

with ⌘ a l ⇥ 1 vector of unknown parameters estimated by maximum like-
lihood, assuming that the orders p, q are known a priori.7 Note also that
the fractional parameter, d, is fixed under the null, thus equation 15 above
is relevant to our empirical estimations. Our approach can thus be summa-
rized as follows. We select a value d

0

in the grid d1
0

+ i�d, with �d the grid
increment and i = 1, ..., s. Then an initial disjoint break date, T

1

, is selected
and the residuals, ût = (1� L)d0 , x̂t = (1� L)d0yt � �̂0[(1� L)d0zt], are thus
obtained. This is then used to calculate the r̂ statistic of equation 11, with

7For the ARMA model, ⌘ = (�1, ...,�p, 1, ..., q)
0 and for the ARFIMA model, ⌘ =

(d,�1, ...,�p, 1, ..., q)
0, with l = p+ q + 1, implying that g(�j ; ⌘) = | (e�i�j )

�(e�i�j )
|
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break dates then updated using the Bai and Perron (1998) algorithm. These
steps are then repeated until

PT
t=1

ût
2 is minimized, and done for all the grid

increments. At each step in the process, we minimize the RSS(T̂k) for a given
d
0

, with the parameters �̂ and nuisance parameters ⌘̂ estimated sequentially.
An approximate one-sided test of H

0

: d = d
0

is then rejected in favor of
Ha : d > d

0

(d < d
0

) at the 100↵% level when r̂ > z↵(r̂ < �z↵), with ↵ the
probability that the standard normal distribution exceeds z↵. In the empiri-
cal implementation, we allow structural breaks in the full sample estimation.
We use this procedure in the same fashion as the rolling window ADF re-
gression of Phillips, Shi, and Yu (2013). In the rolling implementation, the
sample interval begins with a fraction r

1

and ends with a fraction r
2

, with
the size of the window given as rw = r

2

� r
1

. We do not allow structural
breaks in the rolling estimation since a small window size of rw is unlikely to
include structural break impacts.

4. Data Description

Our metric of interest in this study is the real house price (RHP) over the
annual period of 1830-2013, with the start and end date being purely driven
by data availability on house prices at the time of writing. The nominal
house price is the Winans International U.S. Real Estate Index, which tracks
the price of new homes back to 1830, obtained from the Global Financial
Database. The nominal house price index is deflated by the Consumer Price
Index (CPI) (and then multiplied by 100) to derive the real house price index.
The CPI data is downloaded from the website of Robert Sahr (http://
oregonstate.edu/cla/polisci/sahr/sahr). The RHP is then transformed
into its natural logarithmic form.

The first step in using the GSADF date-stamping procedure is to apply
the summary right-tailed GSADF tests to the series. Table 5 shows that for
both series, at the 5% level (with the smallest window size of 15), we find
that our GSADF test statistics exceed the 10% and 5% right-tailed critical
values respectively, rejecting the hypothesis in favour of a root exceeding
unity at some point. This provides evidence that RHP experienced periods
of explosivity for the full sample. Using this approach to locate the bubbles,
we compare the SADF statistic sequence with the 95% SADF critical value
sequence, obtained using Monte Carlo simulations.8 As can be seen from

8Details of this approach are contained in Phillips et al. (2013). The existence of
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figure 2 in the appendix, RHP shows sustained growth in the post-war era,
reaching its peak in 2005. Over the sample period, there were three episodes
identified by the GSADF approach as explosive. Our fractional integration
approach also provides evidence for the presence of several periods of ex-
plosivity for the RHP. These results and their economic relevance will be
discussed in the next section.

5. Empirical Results

Figure 2 displays the results of the GSADF procedure over the sample pe-
riod, with starting periods of explosivity labeled when the blue line (BSADF
sequence) exceeds the red line (95% critical values), and ends where it dips
below the red line. These periods of explosivity are summarized in table
1. We see that for the RHP series, there are three periods of explosivity
with relatively short durations.9 The first episode of explosivity was pre-
ceded by the five year depression following the panic of 1873, and saw the
US Congress require a form of quantitative easing in the late 1870s.10 This
was followed by a spike in asset prices broadly, with real housing prices rising
by 149% between 1878 and 1880. The second was between 1956 and 1957,
where real house prices rose by over 43% between 1955 - 1957. This was
driven by a decade of prosperity where the US economy grew significantly
and employment were at all-time lows. The last episode identified is between
2004 and 2006. This follows a period where real house prices rose by roughly
26% from 2000–2006. The explosive episode identified was preceded by the
Fed funds rate being lowered significantly11, and characterized by sharply
increasing house prices, large scale deregulation of institutions able to pro-
vide mortgage products, and a proliferation of investment vehicles designed
by leveraged institutions to magnify the property market returns. This cul-
minated in a period of unprecedented expansion in mortgage creation and
housing price increases.

possible structural breaks in the series would merely serve to strengthen the argument for
roots exceeding unity, and so we do not control for such events here.

9As noted by Phillips, Wu, and Yu (2011), periods of explosivity of short lengths should
be excluded, which in our study we cut-o↵ at a minimum of 2 periods for explosivity.

10The Bland-Allison Act of 1878 saw the US Congress require Treasury to buy up silver
and in so doing inject liquidity into the economy.

11The Fed funds rate was lowered from 6.5% to 1.75% in 2001, following fears of a
deflationary trap following the DotCom crash.
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Table 1: GSADF explosive periods: RHP

Sample : 1830 - 2013

Included observations: 184
Starting Date Ending Date Duration (Years)

1879 1880 2
1956 1957 2
2004 2006 3

The next technique used in this study to label periods of explosiveness
is the procedure proposed by Balcilar et al. (2015). The estimation was
carried out as follows: for each chosen value of d we use the statistic for r̂,
given in equation 11, to test whether the fractional parameter, d, exceeds 1.
This would be indicative of an explosive period, making it comparable to the
sequential unit root tests above. We first test for various fractional orders d in
the full ample. In our estimation for, the full sample we use two deterministic
structures for zt, with z

1,t corresponding to a constant and trend, and z
2,t

corresponding to the general case in equation 7. The estimation procedure
detailed in section 3, identified two endogenously determined linear trend and
level breaks (denoted DT t,l

t,i and DLt,l
t,i, respectively), which occurred at 1877

and 1954. These breaks correspond to periods of explosivity defined using
the GSADF approach. The procedure is then used in a rolling estimation
fashion with fixed window size of rw = 15. Rolling estimation does not allow
structural brea dummies, since a small window size does not su↵er from
structural break impacts.

The fit of the structural break model for the full sample can be viewed in
figure 3 in the appendix. As can be seen, the model tracks the broad trend
of the data rather well. Table 2 below provides the estimated full sample fit
of the structural break model, using deterministic structure z

2,t.
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Table 2: Estimates of deterministic and structural pa-
rameters

Constant 8.9579*** (0.0525) 9.4866*** (0.073)

Trend 0.0149*** (0.0005) -0.0096*** (0.003)

DLt,l
t,1 9.944*** (0.114)

DT t,l
t,1 0.003** (0.001)

DLt,l
t,2 8.963*** (0.295)

DT t,l
t,2 0.015*** (0.002)

MA(1) -0.032 (0.074) 0.043 (0.074)
MA(2) 0.016 (0.074) 0.176** (0.073)

BIC -1.014 -1.337
�̂ 0.355 0.248

Notes:

The table reports the parameter estimates of the model de-

fined in equation 6 and explained thereafter, at minimum

absolute values of the r̂ statistic given in equation 11.

Standard errors of the estimates are given in parentheses.

***, ** denote significance at 1% and 5% levels, respectively.

�̂ is the standard error of the estimate and BIC the Bayesian

Information Criterion.

From the table above, we see that nearly all of the parameters for the
second model structure, z

2,t, are significant. The significant structural break
dummy estimates confirm the existence of significant breaks in both trend
and levels of the RHP series at 1877 and 1954.

In order to validate the use of the GSADF procedures earlier (as struc-
tural breaks could lead to the shifting up of orders of integration), we also
include z

1,t’s estimates in table 3 below. From it we see firstly that when not
controlling for the structural breaks, the lower bound of significance for the
fractional order of integration estimate exceeds unity at the 1% level. When
controlling for the structural breaks using z

2,t, we see non-rejection covers
the range 0.94 to 1.00 at the 5% level, and 0.92 to 1.01 at the 1% level.12

This indicates that there is strong evidence that RHP experienced periods of
explosivity, when comparing the null of a unit root to the more flexible test
of a fractional order of integration, even when not controlling for structural
breaks. This validates the use of PSY, (2013)’s approach, as it indicates that

12Despite not rejecting range of values above 1 at the 1% level, it is clear that the lower
bound is at the very least highly persistent and close to unity.

15



such breaks do not significantly account for explosivity in the full sample for
RHP.

Table 3: Fractional integration estimations using
Robinson (1994)’s statistic

d0 z1,t z2,t d0 z1,t z2,t

0.81 21.32⇤,† 8.88⇤,† 1.01 0.64 -1.95†

0.82 19.60⇤,† 8.12⇤,† 1.02 0.09 -2.30⇤,†

0.83 17.99⇤,† 7.38⇤,† 1.03 -0.44 -2.63⇤,†

0.84 16.48⇤,† 6.67⇤,† 1.04 -0.94 -2.95⇤,†

0.85 15.06⇤,† 5.99⇤,† 1.05 -1.42 -3.26⇤,†

0.86 13.73⇤,† 5.34⇤,† 1.06 -1.87† -3.55⇤,†

0.87 12.47⇤,† 4.71⇤,† 1.07 -2.30⇤,† -3.84⇤,†

0.88 11.29⇤,† 4.10⇤,† 1.08 -2.71⇤,† -4.11⇤,†

0.89 10.17⇤,† 3.52⇤,† 1.09 -3.09⇤,† -4.37⇤,†

0.9 9.12⇤,† 2.96⇤,† 1.1 -3.46⇤,† -4.61⇤,†

0.91 8.12⇤,† 2.42⇤,† 1.11 -3.81⇤,† -4.85⇤,†

0.92 7.18⇤,† 1.90† 1.12 -4.15⇤,† -5.08⇤,†

0.93 6.29⇤,† 1.40† 1.13 -4.46⇤,† -5.30⇤,†

0.94 5.45⇤,† 0.92 1.14 -4.76⇤,† -5.51⇤,†

0.95 4.65⇤,† 0.46 1.15 -5.05⇤,† -5.71⇤,†

0.96 3.89⇤,† 0.02 1.16 -5.32⇤,† -5.90⇤,†

0.97 3.17⇤,† -0.41 1.17 -5.58⇤,† -6.09⇤,†

0.98 2.49⇤,† -0.82 1.18 -5.83⇤,† -6.26⇤,†

0.99 1.84† -1.21 1.19 -6.06⇤,† -6.43⇤,†

1 1.22 -1.59 1.2 -6.28⇤,† -6.59⇤,†

Notes:

⇤
and

†
indicate the non-rejection at the 1% and 5% levels,

respectively, when comparing the r̂ statistic to the standard

normal critical values for a one sided test.

z1,t indicates a deterministic structure with no structural

breaks, while z2,t has two endogenously identified linear

trend and level breaks.

In order to date-stamp periods of explosivity using this approach, we
employ a rolling window procedure to calculate the r̂ statistic. We use a
fixed length window size of 15 sequentially from the beginning to the end
of the sample, adding a single observation and dropping the last at each
step. We then calculate at each step a range of r̂ statistics, enabling us to
estimate a lower and upper bound limit for d (using a one sided test with 5%
significance level). The benefit of using this approach to identify periods of
explosivity is that, firstly, it allows for a changing structure of the underlying
data, and secondly it is robust to possible structural breaks. This implies we
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use the rolling window identification technique on the z
1,t deterministic form,

as opposed to the form accounting for the breaks explicitly. Although there
are di↵ering views on the appropriate size of such fixed window techniques13,
our chosen window size reflects our desire to optimize the representativeness
of the model, particularly as we identified two breaks in the series. Figure 1
below shows our rolling window estimations.
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Figure 1: Rolling estimations of the r̂ statistics

From figure 1, we identify periods of explosivity as starting when the lower
bound (blue line) cross 1, and ends when it dips below 1. Table 4 summarizes
the periods of explosivity so identified. As before, we ignore episodes shorter
than 1 period in duration, while also excluding periods of potential negative
explosivity, as our focus is on price build-ups.

13C.f. Pesaran and Timmermann (2005) for a deeper discussion.
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Table 4: Rolling r̂ explosive periods: RHP

Sample : 1830 - 2013

Included observations: 184
Starting Date Ending Date Duration (Years)

1850 1852 3
1858 1863 6
1866 1873 8
1926 1929 4
1984 1985 2
1998 1999 2
2002 2003 2
2009 2011 2

From table 4, we see that the fractional integration rolling window ap-
proach o↵ers greater insight into periods of explosiveness during the 1800s,
particularly as there is a much shorter burn-in period. We see, e.g., several
periods of explosiveness in real house prices during the 1849 – 1855 California
gold rush14, which saw an increase in real house prices of over 70% during
this period.15 The US gold rush continued until 1864, during which time
another period of explosivity can be identified towards the latter part. The
next period of RHP explosivity is labeled between 1866 – 1873, right after
the US civil war which ended in 1865. Prices during this phase peaked in
1867, 81% higher than during the war in 1864. The next episode of explosiv-
ity identified is from 1926 – 1929, during which time real house prices rose
by over 48%. This coincided with unprecedented asset price inflation across
nearly all US asset classes. Real house prices peaked in 1928, and were down
85% by 1932, following the start of the Great Depression in 1929.

This approach then identifies two short-lived periods of explosivity during
the mid 1980s and late 1990s. The first episode transpired in the build up to
what is today known as the Savings and Loan crisis, which started in 1986,
and saw real prices rise by roughly 30% from 1984–1987. This was caused
in part by large scale deregulation of lending standards and a reduction in
capital reserve requirements in the US, which both served to drive large scale

14C.f. Santos, R. L. (1998). The Gold Rush of California: A Bibliography of Periodical
Articles. Cass Publications.

15RHP peaked in 1853 at 194% above the level in 1848.
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credit creation, particularly in financing mortgages. The 1990s saw RHP first
decline substantially (after peaking in 1989, it fell by roughly 21% by 1993),
while picking up in the late 1990s and reaching its 1989 peak again in 2001.
Real prices then surged in the early 2000s, peaking in 2004 at 27% higher
than in 2000. The RHP correction came after 2006, with a turnaround in
RHP between 2009 – 2011 identified as a significant rise in RHP.

6. Conclusion

This paper set out to identify periods of US house price explosivity from
1830 – 2013. In order to identify house price fundamentals, we make use of the
general price level (measured as the US CPI index). The implicit assumption
thus made is that house prices tend to reflect general movements in prices
across the economy. Large deviations from past levels could therefore be
considered as explosive in the short term as it could feasibly lead to higher
allocation towards houses as assets experiencing high capital growth. This,
in turn, feeds into more demand and even higher prices, potentially driving
an episode of unsustainable asset price increases, particularly as a result of
factors inherent to property purchases (such as typically high transaction
costs and low ability to short-sell) that make it uniquely prone to bubble-
type episodes. Although other measures have been suggested for use as
fundamentals, we are constrained by data availability for our long dated
sample.16

The first technique used to identify periods of explosivity, is the recursive
GSADF test suggested by Phillips et al. (2013). This test allows the e↵ective
date-stamping of periodically collapsing bubble-like periods, allowing us to
label several historical periods of significant real house price build-ups. For
the RHP measure, we define three short periods of explosivity, during the
late 1800s, mid 1950s and the mid 2000s.

The second measure used to test right tailed alternatives to unit root
testing, focuses on the fractional order of integration, d. The procedure uses
Robinson (1994)’s r̂ statistic to define confidence bands for likely values of
d. We also allow for the identification of multiple periods of endogenously
determined structural breaks in the form of level and trend shifts at unknown
dates. We then use a rolling window approach to date-stamp periods of likely

16Despite this, we maintain the appropriateness of these measures as proxying an es-
sentially immeasurable fundamental level.
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explosivity in the series, identified as periods where the lower bound of the
95% confidence interval of d exceeds unity. The periods so identified suggest
several periods of explosivity during the 1800s, particularly surrounding the
US gold rush, as well as immediately following the Civil War. Significant
and unsustainable build-ups in real house prices are then also observed in
the 1920s shortly before the Great Depression, the 1980s during the period
preceding the S&L crisis, as well as during the late 1990s and early and late
2000s. Our results suggest that the more flexible, long memory approach
of using fractional integration to test the alternative hypothesis, provides a
richer set of dates of where prices likely deviated from mean reversion toward
aggregate prices in the US.

In summary, our analysis provides a thorough investigation of the time-
series characteristic of US house prices over the last two centuries, novel in
its coverage as well as use of fractional integration in determining house price
explosivity.
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7. Appendix

Table 5: Right Tailed ADF Test

Sample : 1830 2013
Included observations: 184
Lag Length: Fixed, lag=0
Window size: 15
H

0

: RHP has a unit root
t-Statistic Prob.

GSADF 0.050 0.033
Test critical values: 99% level 0.622

95% level -0.167
90% level -0.519
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Figure 2: Backward SADF procedure: Real House Price
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